留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川泸定MS6.8级地震区湾东河流域泥石流活动性预测

张宪政 铁永波 李光辉 杨昶 卢佳燕 鲁拓

张宪政, 铁永波, 李光辉, 等, 2022. 四川泸定MS6.8级地震区湾东河流域泥石流活动性预测. 地质力学学报, 28 (6): 1035-1045. DOI: 10.12090/j.issn.1006-6616.20222827
引用本文: 张宪政, 铁永波, 李光辉, 等, 2022. 四川泸定MS6.8级地震区湾东河流域泥石流活动性预测. 地质力学学报, 28 (6): 1035-1045. DOI: 10.12090/j.issn.1006-6616.20222827
ZHANG Xianzheng, TIE Yongbo, LI Guanghui, et al., 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28 (6): 1035-1045. DOI: 10.12090/j.issn.1006-6616.20222827
Citation: ZHANG Xianzheng, TIE Yongbo, LI Guanghui, et al., 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28 (6): 1035-1045. DOI: 10.12090/j.issn.1006-6616.20222827

四川泸定MS6.8级地震区湾东河流域泥石流活动性预测

doi: 10.12090/j.issn.1006-6616.20222827
基金项目: 

国家自然科学基金 U20A20110-01

中国地质调查局地质调查项目 DD20221746

详细信息
    作者简介:

    张宪政(1990—), 男, 博士, 工程师, 主要从事地质灾害评价与防治研究工作。E-mail: 1067303751@qq.com

    通讯作者:

    铁永波(1979—), 男, 博士, 教授级高级工程师, 主要从事地质灾害形成机理与防治研究工作。E-mail: tyongbo@mail.cgs.gov.cn

  • 中图分类号: P642.23

Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake

Funds: 

the National Natural Science Foundation of China U20A20110-01

the Geological Survery Project of the China Geological Survey DD20221746

  • 摘要:

    2022年9月5日四川泸定县发生MS 6.8级地震, 地震诱发大量同震崩滑体, 并导致湾东河断流。基于现场调查、影像解译和区域地质资料分析, 采用空间统计和水文计算的方法, 对湾东河流域同震崩滑体分布特征和潜在泥石流危险性进行了研究。结果表明: 湾东河流域内同震崩滑体主要分布在地震烈度Ⅸ度区, 规模以中小型为主, 主要沿沟道两侧展布, 尤其是单薄山脊两侧临空面发育密度较大, 距断层距离和坡度对其分布具有明显的控灾效应; 未来湾东河流域暴发溃决型泥石流的冲出量可能为同等触发条件下震前泥石流的约两倍。依此提出了加强流域内溃决型泥石流风险防范, 尽快通过综合监测预警获取泥石流发生的临界雨量值, 在泥石流防治工程设计中应充分考虑泥石流规模放大系数等防灾减灾建议, 为泸定地震后泥石流灾害防灾减灾提供科学参考。

     

  • 图  1  研究区地质岩性和水系分布图

    Figure  1.  Lithology and drainage distribution map of the study area

    图  2  湾东河多处滑坡堵塞河道

    Figure  2.  Landslide dams blocked the channel of the Wandong catchment

    图  3  泸定地震震前和震后崩滑体分布图

    a—同震崩滑体分布图;b—震前崩滑体分布图

    Figure  3.  Landslide distribution map of pre and post the Luding earthquake

    (a) Co-seismic landslide distribution map; (b) Pre-seismic landslide distribution map

    图  4  同震崩滑体密度分布图

    Figure  4.  Density distribution map of the co-seismic landslides

    图  5  同震崩滑体面积及密度与距断层距离的关系统计图

    Figure  5.  Graph of co-seismic landslide area and density vesus distance from fault

    图  6  同震崩滑体面积及密度与高程的关系统计图

    Figure  6.  Graph of co-seismic landslide area and density vesus elevation

    图  7  同震崩滑体面积与坡度的关系统计图

    Figure  7.  Graph of co-seismic landslide area and density vesus slope steepness

    图  8  同震崩滑体面积及密度与坡向的关系雷达图

    Figure  8.  Radar graph of co-seismic landslide area and density vesus aspect

    图  9  堆积在沟道中的同震崩滑体碎屑物

    Figure  9.  The debris deposition of co-seismic landslides along the channel

    图  10  泸定地震震前和震后湾东河主沟下游滑坡发育及堰塞湖分布情况

    a—地震后河道堵塞形成堰塞湖分布图(影像来源于高分6号);b—地震前河道情况(影像来源于谷歌地图)

    Figure  10.  The distribution of co-seismic landslides and dammed lakes in the main downstream channel of the Wandong catchment pre and post the Luding earthquake

    (a) The distribution of the dammed lakes formed by co-seismic landslides (The image is from GF6); (b) The state of the channel before the earthquake (The image is from Google Earth)

    表  1  数据清单

    Table  1.   Data list

    类型 分辨率 来源
    岩性数据 1∶5万 成都地质调查中心
    高程数据 12.5 m ALOS全球数字地表模型
    (https://www.eorc.jaxa.jp)
    多光谱影像数据 10 m 哨兵2;日期:2022-09-11、2021-04-29
    (https://scihub.copernicus.eu)
    全彩影像 2 m 高分2号、高分6号;日期:2022-09-10
    (由四川省地质调查院提供)
    下载: 导出CSV

    表  2  泥石流冲出量计算参数表

    Table  2.   Parameters of debris flow runout

    流域名称 容重/(t/m3) 堵塞系数
    湾东河主沟 1.80 4.5
    红岩沟 2.15 3.5
    银厂沟 2.15 3.5
    下载: 导出CSV

    表  3  震后湾东沟流域不同频率下泥石流特征值

    Table  3.   Characteristic values of debris flow at different frequencies in the Wandong catchment

    参数 流域名称 降雨频率P/%
    5 2 1 0.5
    洪水洪峰流量/(m3/s) 湾东河 281 338 376 461
    红岩沟 92 106 117 139
    银厂沟 68 77 85 99
    泥石流洪峰流量/(m3/s) 湾东河 1330 1600 1778 2178
    红岩沟 606 702 770 915
    银厂沟 451 512 558 652
    一次冲出固体物质总量/(×105 m3) 湾东河 6.8* 6.7* 7.9* 8.9*
    红岩沟 1.5 1.7 1.9 2.3
    银厂沟 1.1 1.3 1.4 1.6
    *假定主沟道内8个堰塞湖全部溃决,可提供3.6×105 m3的固体物质
    下载: 导出CSV
  • BARTH S, GEERTSEMA M, BEVINGTON A R, et al., 2020. Landslide response to the 27 October 2012 earthquake (MW 7.8), southern Haida Gwaii, British Columbia, Canada[J]. Landslides, 17(3): 517-526. doi: 10.1007/s10346-019-01292-7
    CHANG M, TANG C, VAN ASCH T W J, et al., 2017. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China[J]. Landslides, 14(5): 1783-1792. doi: 10.1007/s10346-017-0824-9
    CHEN M, TANG C, XIONG J, et al., 2020. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China[J]. Geomorphology, 367: 107317. doi: 10.1016/j.geomorph.2020.107317
    CHEN M, TANG C, LI M W, et al., 2022. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area[J]. CATENA, 210: 105871. doi: 10.1016/j.catena.2021.105871
    CHEN S J, ZHENG X, WANG J B, et al., 2020. Risk analysis of cascade landslide dam based on an approach of quick breach flood calculation[J]. Water Resources and Hydropower Engineering, 51(3): 82-90. (in Chinese with English abstract)
    China Association of Geological Hazard Prevention, 2018. Specification of geological investigation for debris flow stabilization[S]. Beijing, 4: 47-50. (in Chinese)
    FAN X M, SCARINGI G, KORUP O, et al., 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 57(2): 421-503. doi: 10.1029/2018RG000626
    FANG Q S, TANG C, 2016. Study on run-out amount of break and general debris flows in Wenchuan Earthquake area[J]. Journal of Catastrophology, 31(1): 66-71. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2016.01.014
    GAO D D, WU Y, CHEN M, et al., 2015. Baseflow separation and rainfall infiltration calculation of small watershed in Gongga mountain forest system[J]. Resources and Environment in the Yangtze Basin, 24(6): 949-955. (in Chinese with English abstract)
    GE Y G, CUI P, ZHANG J Q, et al., 2015. Catastrophic debris flows on July 10th 2013 along the Min River in areas seriously-hit by the Wenchuan earthquake[J]. Journal of Mountain Science, 12(1): 186-206. doi: 10.1007/s11629-014-3100-7
    HUANG R Q, LI W L, 2008. Research on development and distribution rules of Geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.12.028
    HUANG X, TANG C, 2017. Quantitative analysis of dynamic features for entrainment-outburst-induced catastrophic debris flows in Wenchuan earthquake area[J]. Journal of Engineering Geology, 25(6): 1491-1500. (in Chinese with English abstract)
    LIN C W, SHIEH C L, YUAN B D, et al., 2004. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan[J]. Engineering Geology, 71(1-2): 49-61. doi: 10.1016/S0013-7952(03)00125-X
    LIU Z, LI B, HE K, et al., 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects[J]. Journal of Geomechanics, 26(1): 115-124. (in Chinese with English abstract)
    NI H Y, 2016. Influence of rainfall patterns on debris flow initiation and critical rainfall condition[D]. Chengdu: Chengdu University of Technology: 21-22. (in Chinese with English abstract)
    POURGHASEMI H R, JIRANDEH A G, PRADHAN B, et al., 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran[J]. Journal of Earth System Science, 122(2): 349-369. doi: 10.1007/s12040-013-0282-2
    SHE T, XIE H, WANG S G, et al., 2008. Characteristics and hazard assessment of Wandong river debris flow on east slope of Gongga mountain[J]. Research of Soil and Water Conservation, 15(3): 242-245. (in Chinese with English abstract)
    Sichuan Provincial Water Resources Department, 1984. Specification of rainstorm and flood calculation in medium and small catchments of Sichuan Province[M]. Chengdu: Sichuan Provincial Water Resources Department, 6: 8-17. (in Chinese)
    SONG Z, BA R J, LIU Y J, 2010. Analysis on blocking of the Dadu river by a giant debris flow of Moxi River: quantitative calculation of scale of a debris flow and flows of different frequencies by rain-flood method[J]. Journal of Catastrophology, 25(2): 73-75. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2010.02.015
    TANG C, ZHU J, DING J, et al., 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8(4): 485-497. doi: 10.1007/s10346-011-0269-5
    TANG C, VAN WESTEN C, 2018. Atlas of Wenchuan-earthquake geohazards[M]. Beijing: Science Press: 17-18.
    TANG C X, VAN WESTEN C J, TANYAS H, et al., 2016. Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake[J]. Natural Hazards and Earth System Sciences, 16(12): 2641-2655. doi: 10.5194/nhess-16-2641-2016
    TIE Y B, LI Z L, 2011. Characteristics of debris flow development and its environmental response in Moxi River basin[J]. Yangtze River, 42(13): 40-43, 71. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2011.13.010
    TIE Y B, ZHANG X Z, LU J Y, et al., 2022. Characteristics of geological hazards and it's mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province[J/OL]. Hydrogeology & Engineering Geology, 49: 1-12[2022-09-27]. https://www.swdzgcdz.com/cn/article/doi/10.16030/j.cnki.issn.1000-3665.202209023. (in Chinese with English abstract)
    WANG D H, TIAN K, 2014. Spatial distribution analysis of seismic landslides along Luhuo segment of Xianshuihe fault zone[J]. Journal of Engineering Geology, 22(2): 292-299. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2014.02.020
    XIAO X, LU C Y, WU X F, 2008. Debris flow disaster and prevention countermeasures in Wandong River, Luding County[C]. Chengdu: Sichuan Society of Civil Engineering and Architecture: 181-182. (in Chinese)
    XIN P, WU S R, ZHANG Z L, et al., 2017. Distribution characteristics and formation mechanism of landslides triggered by activities of Baoji-Wushan segment at the northern margin of western Qinling fault zone[J]. Journal of Geomechanics, 23(5): 723-733. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.05.009
    XIONG J, TANG C, TANG H, et al., 2022. Long-term hillslope erosion and landslide-channel coupling in the area of the catastrophic Wenchuan earthquake[J]. Engineering Geology, 305: 106727. doi: 10.1016/j.enggeo.2022.106727
    XU C, XU X W, 2014. The spatial distribution pattern of landslides triggered by the 20 April 2013 Lushan earthquake of China and its implication to identification of the seismogenic fault[J]. Chinese Science Bulletin, 59(13): 1416-1424. doi: 10.1007/s11434-014-0202-0
    XU C, XU X W, SHYU J B H, 2015. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013[J]. Geomorphology, 248: 77-92. doi: 10.1016/j.geomorph.2015.07.002
    XU Q, LI W L, 2010. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 18(6): 818-826. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.002
    YUNUS A P, FAN X M, TANG X L, et al., 2020. Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake[J]. Remote Sensing of Environment, 236: 111476. doi: 10.1016/j.rse.2019.111476
    ZHANG H W, LIU F Z, WANG J C, et al., 2022. Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation[J]. Journal of Geomechanics, 28(2): 306-318. (in Chinese with English abstract)
    ZHANG X Z, TANG C X, LI N, et al., 2022. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns[J]. Landslides, 19(8): 1935-1956. doi: 10.1007/s10346-022-01896-6
    ZHOU W, TANG C, 2014. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides, 11(5): 877-887. doi: 10.1007/s10346-013-0421-5
    陈淑婧, 郑轩, 王江波, 等, 2020. 基于快速连溃洪水计算的梯级堰塞湖风险分析[J]. 水利水电技术, 51(3): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202003012.htm
    方群生, 唐川, 2016. 汶川8.0级地震震区溃决型和一般型泥石流冲出量研究[J]. 灾害学, 31(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201601015.htm
    高东东, 吴勇, 陈盟, 等, 2015. 贡嘎山森林系统小流域基流分割与降雨入渗补给计算[J]. 长江流域资源与环境, 24(6): 949-955. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201506008.htm
    黄润秋, 李为乐, 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
    黄勋, 唐川, 2017. 强震区侵蚀-溃决型泥石流的动力特性定量分析[J]. 工程地质学报, 25(6): 1491-1500. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201706012.htm
    刘铮, 李滨, 贺凯, 等, 2020. 地震作用下高陡岩质斜坡动力响应规律研究[J]. 地质力学学报, 26(1): 115-124. doi: 10.12090/j.issn.1006-6616.2020.26.01.012
    倪化勇, 2016. 泥石流发生雨型响应及其临界降雨条件[D]. 成都: 成都理工大学: 21-22.
    佘涛, 谢洪, 王士革, 等, 2008. 贡嘎山东坡湾东河泥石流的特征及危险度评价[J]. 水土保持研究, 15(3): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200803063.htm
    四川省水利电力厅. 1984. 四川省中小流域暴雨洪水计算手册[S]. 成都, 6: 8-17.
    宋志, 巴仁基, 刘宇杰, 2010. 磨西河特大型泥石流堵塞大渡河分析: 以一次泥石流规模、不同频率雨洪法流量定量计算[J]. 灾害学, 25(2): 73-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201002017.htm
    铁永波, 李宗亮, 2011. 磨西河流域泥石流发育特征及其环境响应分析[J]. 人民长江, 42(13): 40-43, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201113011.htm
    铁永波, 张宪政, 卢佳燕, 等, 2022. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J/OL]. 水文地质工程地质, 49(0): 1-12[2022-09-27]. https://www.swdzgcdz.com/cn/article/doi/10.16030/j.cnki.issn.1000-3665.202209023.
    王东辉, 田凯, 2014. 鲜水河断裂带炉霍段地震滑坡空间分布规律分析[J]. 工程地质学报, 22(2): 292-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201402018.htm
    肖翔, 卢铖昀, 武肖福, 2008. 沪定县湾东河泥石流灾害及防治对策[C]//四川省土木建筑学会第33届学术年会论文集. 成都: 四川省土木建筑学会: 181-182.
    辛鹏, 吴树仁, 张泽林, 等, 2017. 西秦岭北缘断裂宝鸡-武山段活动触发滑坡分布规律与成因机制[J]. 地质力学学报, 23(5): 723-733. https://journal.geomech.ac.cn/article/id/7fa11a66-0569-4950-b531-b19b835bb298
    许强, 李为乐, 2010. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报, 18(6): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006002.htm
    张浩韦, 刘福臻, 王军朝, 等, 2022. 基于FLO-2D数值模拟的工布江达县城泥石流灾害危险性评价[J]. 地质力学学报, 28(2): 306-318. doi: 10.12090/j.issn.1006-6616.2021117
    中国地质灾害防治工程行业协会. 2018. 泥石流灾害防治工程勘查规范(试行)[S]. 北京, 4: 47-50.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  190
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2022-10-12

目录

    /

    返回文章
    返回