Mineralization styles and structure-controlled mineralization rules of the Sanhe Pb-Zn Deposit in Inner Mongolia
-
摘要: 以内蒙三河铅锌矿床为研究对象,通过详细的野外和井下地质调研、勘查资料综合分析、构造地质测量、矿石和蚀变岩的岩石学和矿物学研究等,对矿区主要的构造类型、产状特征、脉体和蚀变的类型及矿化与断裂构造的关系进行了详细的研究。研究结果表明,矿区矿体主要呈脉状-网脉状产于北西西向断裂构造中。根据矿区断裂-脉体类型-蚀变的关系可以看出,走向北西西、倾向南南西的断裂为矿区主要的控矿断裂,主控矿断裂产状平直或呈舒缓波状,其间常发育铁锰碳酸盐-石英-硫化物脉,脉侧蚀变以硅化、黄铁矿化和绿泥石化为主。矿区主要矿体呈北西西走向,倾向南南西,其在走向和倾向上延伸规模大、产状稳定,地表常表现为蚀变片理化带,但其中常可见张性角砾岩脉或晶洞构造,其应为早期剪性断裂再次活化的产物。北北西和北北东向断裂为成矿后断裂,其间常被正长斑岩脉、闪斜煌斑岩脉充填,或发育方解石±石英±萤石±黏土矿物脉,可切穿含矿构造和含矿碳酸盐脉;成矿后断裂产状变化较大,分枝分叉和侧列现象常见,且其中常发育不规则状方解石-萤石脉及晶洞构造,显示了张性断裂的特征;同时对矿体有一定的错断,但断距不大,对找矿影响较小。无矿方解石-萤石-黏土矿脉两侧蚀变以黏土矿化为主,并发育少量浸染状黄铁矿化。铁锰碳酸盐脉两侧发育绿泥石化、硅化、黄铁矿化为矿区重要的找矿标志。这一认识对指导矿区及邻区同类矿床的找矿具有重要意义。Abstract: The Sanhe Pb-Zn deposit is studied in this paper through detailed field and underground geological investigations, structural geological surveys, drilling profile analysis combined with petrological and mineralogical analysis of ores and altered wall-rocks. We then discussed the ore-controlling structures and their distribution patterns, the styles of mineralization and alteration, the coupling relation between the mineralization and fault structures. Our results show that the mineralization in the Sanhe deposit show structure-controlled characteristics, and with dominant ore bodies trending NWW, dipping SSW. The extent of the ore-controlling faults can reach hundreds of meters to a few kilometers long, with relative stable occurrence. In the field, the ore-controlling faults occur as altered foliated zones but with tensional breccia veins and druse texture in them, showing a reactivated shear fault signature. NWW- and NNE- trending faults show post-ore deformation characteristics and usually with lamprophyre, syenite porphyry or calcite ±quartz ±fluorite ±clay mineral veins occuring in them. The NNW- and NNE- trending faults and related veins crosscut the mineralized carbonate-quartz veins and NWW-trending faults indicating a post-ore brittle deformation and hydrothermal activity. The post-ore faults and related hydrothermal veins usually occur as branching, bifurcation or irregular shapes and with druse texture in the center of the veins implying a extensional faults. Although the post-ore faults can slightly dislocate the ore bodies and contemporaneous hydrothermal veins, the displacement is negligible for exploration. The alteration around the non-mineralized calcite veins is dominated by clay alteration together with minor disseminated pyrite. Combined the structure-controlled mineralization and the alteration related Pb-Zn minerlization, it is concluded that the NWW-tending faults with silicification, pyritization, chloritization alteration halo, can be used as significant prospecting criteria in the deposit and the neighbouring area.
-
1. 区域地质概况
麻黄山西区位于鄂尔多斯盆地天环坳陷西部[1](图 1)。区域上,延长组为大型湖泊沉积,砂体主要为三角洲类型。本次研究的目的层段三叠系延长组长4 + 5至长6段,共分5个油层组,分别为长4 + 51、长4 + 52、长61、长62、长63。本区总体沉积属于鄂尔多斯盆地西部三角洲体系,长4 + 5、长6段为三角洲前缘亚相[1-2],岩性主要为粉细砂岩与泥岩互层,埋深大约在2170m~2650m之间,油气显示普遍,但试油水多油少,目前处于勘探评价阶段,尚未进行开发生产。
本区储层属低孔低渗一致密型储层,因此储层的含油气较差,造成储层物性及含油气差的原因除储层的沉积类型之外,成岩作用是一个不可忽视的因素。本文从研究区成岩作用类型、成岩阶段划分等方面论述了成岩作用对储层物性与含油气性的影响,为今后该区有利储层勘探开发提供参考。
2. 储层岩石学及物性特征
根据岩心观察及薄片鉴定结果,长4 + 5段储层岩性主要为浅灰色、灰色长石岩屑砂岩(图 2)。碎屑岩中石英含量51% ~ 73%,长石主要为钾长石和斜长石,含量6.8%~20.4%,岩屑见变质岩岩屑、火成岩岩屑和沉积岩岩屑,含量19.1% ~ 27.3%,以变质岩岩屑为主。
长6段储层岩性主要为浅灰色岩屑长石细砂岩(图 2)。碎屑岩中石英含量55.8% ~ 75.5%,长石主要为钾长石和斜长石,含量5.5% ~ 26.3%,岩屑见变质岩岩屑、火成岩岩屑和沉积岩岩屑,含量17%~27.8%。
长4 + 5段储层平均孔隙度为9.9%,平均渗透率为0.6×10-3μm2; 长6段储层平均孔隙度为8.6%,平均渗透率为0.36×10-3μm2。可见,储层类型为低孔低渗一致密型,其中长4+ 5段储层物性略好于长6段储层(图 3)。
3. 成岩作用及特征
利用偏光显微镜对研究区取心井的岩石薄片样品进行观察描述和分析鉴定,认为该地区影响储层性质的成岩作用主要有机械压实与压溶作用、胶结作用、交代作用及溶蚀作用,其特征如下:
3.1 机械压实及压溶作用
研究区长4 + 5及长6段砂岩的支撑类型主要为颗粒支撑,接触类型主要为点一线接触及线接触(图版-1)。泥质岩屑呈假杂基状充填于岩石孔隙之中,云母等片状矿物受挤压发生变形。砂岩压溶作用明显,如ND14井可见石英颗粒次生加大现象(图版-2),一般加大边环绕石英颗粒或局部分布,为Ⅱ级加大。这些现象表明本区压实与压溶作用都较强,本区储层原生孔隙几乎损失殆尽,导致在本区原生孔隙很少发育。所以压实作用是本区储层物性变差的主要原因,现今已发现的油气储集空间主要是由后期成岩改造所形成。
3.2 胶结作用
长4 + 5及长6储层砂岩的胶结类型主要为孔隙式胶结。成岩前期的泥质、钙质胶结伴随压实作用使岩石孔隙急剧减少;后期压实作用使孔隙度的减少速率变小,储层岩石物性变差的原因主要是孔隙被自生粘土及碳酸盐类矿物所充填。
3.2.1 碳酸盐胶结作用
研究区长4 + 5及长6储层砂岩碳酸盐胶结非常普遍(图版-3),主要矿物有含铁的方解石、白云石,以及少量的菱铁矿。从ND14井可见,在水下分流河道砂岩中碳酸盐胶结较严重(图 4),这可能是由于水下分流河道砂岩孔渗相对较好,地层水活跃,溶解作用强烈,更有利于自生碳酸盐的沉淀。方解石呈微晶或亮晶结构,部分或完全交代碎屑颗粒,铁白云石具明显的铁质环带,由此可见该碳酸盐胶结物形成于主压实期以后的埋藏成岩作用,因为在深埋作用下,蒙一伊转变和钙斜长石溶解产生的Ca2+、Mg2+、及Fe2+结合能形成白云石及铁白云石[3]。
3.2.2 自生粘土矿物胶结
研究区自生粘土矿物胶结以绿泥石胶结为主,其平均相对含量高达49.95% (表 1)。绿泥石主要沿颗粒边缘生长,在颗粒表面形成环边或包壳,对岩石的孔隙起到保护的作用。绿泥石的一种成因是由于云母的风化所致,该区常见黑云母及云母化的千枚岩屑,且大多绿泥石化,故绿泥石部分来自云母及岩屑。也有学者认为,大量绿泥石胶结物多出现于三角洲前缘环境,其形成可能与入湖的河流带来的溶解铁有关[4]。
表 1 长4 + 5及长6段砂岩粘土矿物相对含量①Table 1. The relative content of clay mineral of sandstone of 4th + 5th-6th Members of Yanchang Formation① 麻黄山西区块北部延长组储层非均质性与储层评价研宄.中国地质大学(北京),2008.
自生高岭石也是主要的粘土胶结矿物,其平均相对含量为25.6%。高岭石呈蠕虫状集合体充填于岩石孔隙之中,其形成与长石的大量溶解有关。
3.2.3 其他矿物胶结
硅质胶结主要是自生石英,显微镜下常见石英颗粒次生加大,加大边的形成可能与压溶作用及长石向粘土矿物转化作用有关。长石的溶解可以形成次生孔隙以及促使形成石英胶结物[5]。
研究区还见少量的浊沸石和硬石膏胶结。浊沸石的形成与火山物质的水化、长石及岩屑等不稳定组分溶蚀以及粘土矿物转化等关系密切[6]。
3.3 交代作用
研究区常见碳酸盐矿物交代其它组分,主要是方解石交代石英及长石,使石英及长石颗粒的边缘呈港湾状,见亮晶方解石(图版-4)。方解石交代石英,主要控制因素为pH值和温度。据Siever的计算[5],SiO2与CaCO3的平衡条件是pH = 9.8,t = 25℃。所以,当地层温度升高,pH > 9.8时,SiO2就会溶解,CaCO3而就会沉淀,这样方解石就交代了石英。
交代作用也主要发生于水下分流河道等钙质胶结严重的区域(图 5),强烈的钙质胶结导致方解石交代石英颗粒。交代作用过程中,溶解作用会产生部分次生孔隙,而且交代形成的方解石也较易被孔隙水溶解形成次生空隙。从整个成岩作用来说,交代作用对本区储层物性影响程度不大。
3.4 溶蚀作用
溶蚀作用是本区普遍的成岩作用,它对储层的孔隙度有着重要的影响。研究区的长石见不同程度的溶蚀,形成粒内溶孔及铸模孔(图版-5),千枚岩屑及泥质杂基溶蚀现象也较普遍,形成粒间溶孔。由于千枚岩屑呈片状且顺层理分布(图 6),所以在水下分流河道及河口坝等砂岩的平行层理及交错层理的纹层中常见溶蚀缝(图版-6)。碳酸盐矿物溶解较少,仅局部见方解石溶解,形成部分次生孔隙。这是由于在淡水一半咸水湖盆碎屑岩中,有机酸溶液铝硅酸盐组分的溶蚀要比碳酸盐组分的溶蚀强烈得多[7]。
研究区长4 + 5及长6段砂岩的溶蚀作用主要有大气淡水的淋滤作用及埋藏(溶蚀)成岩作用两种方式。
该地区延长组缺失长2及长1段地层,与上覆地层延安组呈不整合接触,说明该地区延长组在地质历史时期曾遭受抬升剥蚀。另据罗静兰等、陈瑞银等所做的埋藏史研究:鄂尔多斯盆地延长组在晚三叠世(208~203Ma)有明显的抬升剥蚀,剥蚀量在100~400m[8-9]。故研究区长4 + 5及长6段砂岩在成岩早期受到过大气淡水淋滤作用。由于大气淡水为酸性水,含CO2,pH值较低,对碳酸盐、长石及黑云母等都有溶蚀作用,易于形成次生孔隙。
后期埋藏(溶蚀)成岩作用主要由碳酸及有机酸引起的溶蚀作用。碳酸主要溶解岩石中的钙质组分,如对方解石的溶解:
但在正常压力下,随着深度的增加,温度的升高,CO2含量逐渐降低,方解石是难溶的,所以埋深较大的地层中,方解石很少被碳酸溶解[10]。有机酸主要溶蚀岩石中的硅酸盐组分,如长石与草酸的反应为:
由以上分析可以看出研究区储层岩石孔隙多为长石、岩屑溶蚀形成的次生孔隙,碳酸盐矿物溶解程度较低的原因在于有机酸的选择性溶蚀作用。
溶蚀作用形成大量的次生孔隙,使岩石物性变好,但也有溶解出来的化学成分发生再沉淀,形成胶结物,堵塞孔隙,使岩石物性变差,尤其是溶蚀作用析出的Ca、Mg等元素,在后期形成的含铁碳酸盐胶结,又使储层物性变差。
3.5 成岩相划分
由以上单因素成岩作用研究,结合含砂率、孔隙度以及碳酸盐含量平面展布,并以单井成岩作用特征为控制,根据邹才能等[11],季汉成等[12]的成岩相划分标准,将研究区的成岩相划分为:低孔渗中细粒长石岩屑砂岩压实相、低孔渗中细粒长石岩屑砂岩碳酸盐胶结相、低孔渗中细粒长石岩屑砂岩长石溶蚀相、低孔渗中细粒长石岩屑砂岩碳酸盐溶解相、低孔渗中细粒长石岩屑砂岩层理缝溶蚀相等。
4. 成岩阶段的确定
研究区储层属于淡水一半咸水湖盆碎屑岩,其古地温、有机质成熟度、自生粘土矿物及岩石结构和孔隙类型等特征如下(图 7)。
长4 + 5、长6储层埋深在1650m~2500m之间,古地温大约在75~120℃之间。鄂尔多斯盆地内延长组烃源岩镜质体反射率为0.7%~1.0%[13]; 颗粒间以点一线及线接触为主,局部呈凹凸接触;石英次生加大现象普遍,属Ⅱ级加大;胶结类型为孔隙式胶结,胶结物主要为含铁的碳酸盐矿物;长石大量被溶蚀,次生溶蚀孔隙发育,局部见少量溶蚀缝;砂岩中自生粘土矿物主要为绿泥石、伊利石及高岭石。
根据以上各种特征,按照中国石油天然气集团总公司规范(2003年)①,初步判断研究区长4+ 5、长6储层目前主要处于中成岩A期,局部处于早成岩B期。
① 中国石油天然气集团总公司,SY/T5477碎屑岩成岩阶段划分规范,2003.
5. 成岩演化史及对储集物性的影响
根据研究区的全井资料,运用PRA盆地模拟软件对盆地埋藏进行了模拟恢复[14],根据目的层段的埋藏曲线结合古地温和Ro等资料划分了研究区的成岩阶段及演化序列(图 8):
早成岩A期:有机质未成熟,古温度小于65℃。地层持续沉降,储层主要以机械压实为主,颗粒以点接触,岩石弱固结一半固结,岩石孔隙迅速减少,孔隙类型主要为原生粒间孔隙,此阶段为早期机械压实、胶结作用阶段(Ⅰ阶段)。
早成岩B期:有机质未成熟一低成熟,古温度范围为65~80℃。在早成岩B期早期,地层继续沉降,储层主要受机械压实作用和胶结作用,早期胶结物较少,局部出现方解石胶结,由于胶结作用较弱,压实作用使原生孔隙损失较多,颗粒呈点一线接触。受晚三叠世(208 ~203Ma)构造抬升的影响,延长组顶部出露地表,遭受剥蚀,储层受到大气淡水淋滤作用,部分长石及碳酸盐矿物受到溶蚀,形成次生孔隙带,埋深分布于2100m ~ 2200m之间,但由于抬升时间较短(只有约5Ma),所以溶蚀强度有限,对储集物性影响不大,该阶段为大气淡水淋滤作用阶段(Ⅱ阶段)。随后地层连续沉降(在侏罗纪晚期短暂抬升),受到强烈的压实及胶结作用,在早成岩B期末期,石英次生加大开始出现,此阶段为中期强烈压实、胶结作用阶段(Ⅲ阶段)。
中成岩A期:随着地层的继续埋深,有机质开始进入生烃门限,有机质成熟阶段为低熟一成熟。由于油气的生成,有机酸大量出现,处于相对封闭的酸性环境,古温度范围为85~140℃。在中成岩A期早期,地层继续受到压实作用,但由于胶结作用的影响,压实强度逐渐减弱,颗粒以线接触为主,局部见凹凸接触,石英次生加大现象较普遍。该期有机酸开始大量出现,铝硅酸盐矿物受到强烈的溶蚀,部分碳酸盐也被溶蚀,形成大量次生溶蚀孔隙,分布于2250m~2350m之间,为主要的储集空间,该阶段为有机酸溶蚀作用阶段(Ⅳ阶段)。随后一段时期有机质进入储层,是油气侵位的主要阶段(Ⅴ阶段)。在中成岩A期末期,有机质成熟,进入生油高峰,有机酸浓度降低,铁方解石及铁白云石大量出现,成为储层的主要胶结物,同时碳酸盐矿物交代石英及长石颗粒,此阶段为铁方解石、铁白云石胶结阶段(Ⅵ阶段)。
中成岩B期:长6底部以下为中成岩B期,但由于不在研究目标层段,缺乏资料,未作分析。
由以上分析可以看出,在成岩演化过程中,Ⅲ阶段的强烈压实和胶结作用及Ⅵ阶段的碳酸盐胶结使研究区长4 + 5、长6储层的原生孔隙损失殆尽,故该区主要为致密型储层。目前本区研究层段的储层平均孔隙度为9.15%,且主要Ⅳ阶段形成的次生溶蚀孔隙,因此不同成岩作用的演化阶段对储层物性有着重要的影响。
6. 结论
(1) 研究区长4 + 5、长6储层岩性主要为细粒一极细粒岩屑长石砂岩及长石岩屑砂岩,结构及成分成熟度较低。平均孔隙度为9.15(,平均渗透率为0.67×10-3μm2, 属低孔特低渗一超低渗的致密储层。
(2) 根据压实作用、胶结作用及交代溶蚀作用等成岩作用特征,结合粘土矿物分析化验资料及盆地埋藏史研究,综合判断长4 + 5、长6储层总体处于中成岩A期,局部为早成岩B期。所经历的成岩演化序列为:Ⅰ.早期机械压实及胶结作用阶段;Ⅱ.大气淡水淋滤作用阶段;Ⅲ.中期强烈压实压溶及胶结作用阶段;Ⅳ.有机酸溶蚀作用阶段;Ⅴ.石油侵位阶段;Ⅵ.铁方解石及铁白云石胶结作用阶段。
(3) 研究区储层砂岩粒度较细,含油性差,加上压实压溶、胶结等作用,特别是后期的碳酸盐胶结作用,使岩石孔隙急剧减少,总体上该区储层物性较差。而大气淡水的淋滤作用及有机酸溶蚀作用,尤其是有机酸对长石及顺层理分布的泥质岩屑的溶蚀,形成一些次生孔隙,改善了储层物性,故该区较好储层应为粒度稍粗、层理发育的水下分流河道及河口坝砂体,这些具有较好次生孔隙的储层是今后油气勘探开发的重点。
责任编辑: 范二平 -
图 1 额尔古纳及周边地区区域地质图(据武广等, 2014; 徐志刚等, 2008修改)
a—蒙古-鄂霍茨克缝合带; b—额尔古纳及周边地区矿点分布
Figure 1. Regional geological map of Ergun and surrounding areas (modified after Wu et al., 2014; Xu et al., 2008)
(a) Mongolia-Okhotsk suture zone; (b) Distribution of mines in the Ergun and surrounding areas
图 5 北西西向断裂中碳酸盐脉的分支复合及边部的羽状裂隙
Ank—铁白云石; Dol—白云石; Qtz—石英; Chl—绿泥石; Gn—方铅矿; Sp—闪锌矿
a—碳酸盐脉的分支复合; b—碳酸盐脉边部的羽状裂隙Figure 5. The branching and recombination of carbonate veins in the NWW-trending fault and the pinnate fissures at the edges
(a) Branching complex of carbonate veins; (b) Pinnate fissures at the edges of carbonate veins
Ank-Iron dolomite; Dol-Dolomite; Qtz-Quartz; Chl-Chlorite; Gn-Galena; Sp-Sphalerite图 6 矿区不同脉体之间的穿插关系
Ank—铁白云石; Dol—白云石; Qtz—石英; Cal—方解石; Chl—绿泥石; Clay—黏土矿物; Gn—方铅矿; Sp—闪锌矿
a—黏土矿物、石英和方解石脉切穿张性石英网脉; b—石英、方解石脉错断含矿铁锰碳酸盐脉Figure 6. Interspersed relationship between different veins in the mining area
(a) Clay minerals, quartz and calcite veins cut through tensile quartz veins; (b) Quartz and calcite veins discontinue ore-bearing iron-manganese carbonate veins
Ank-Iron dolomite; Dol-Dolomite; Qtz-Quartz; Cal-Calcite; Chl-Chlorite; Clay-Clay mineral; Gn-Galena; Sp-Sphalerite图 7 矿区主要热液脉体类型
Ank—铁白云石; Dol—白云石; Qtz—石英; Chl—绿泥石; Cal—方解石; Clay—黏土矿物; Gn—方铅矿; Sp—闪锌矿; Sulf—硫化物
a—含暗色硫化物的铁锰碳酸盐脉; b—方解石脉错断含矿石英脉; c—含铅锌矿化的铁锰碳酸盐脉; d—黏土矿物脉切穿含矿铁锰碳酸盐脉Figure 7. Main types of hydrothermal veins in the mining area
(a) Iron-manganese carbonate veins with dark sulfide; (b) Calcite veins disjoint ore-bearing veins; (c) Iron-manganese carbonate veins with Pb-Zn mineralization; (d) Clay mineral veins cut through ore-bearing iron-manganese carbonate veins
Ank-Iron dolomite; Dol-Dolomite; Qtz-Quartz; Chl-Chlorite; Cal-Calcite; Clay-Clay mineral; Gn-Galena; Sp-Sphalerite; Sulf-Sulfide图 8 矿区常见金属矿物组合
Sti—辉锑矿; Py—黄铁矿; Ccp—黄铜矿; Sp—闪锌矿; Gn—方铅矿; Ank—铁白云石; Clay—黏土矿物
a—与含铁白云石同期的辉锑矿、黄铁矿; b—与细晶石英同期的方铅矿、闪锌矿等金属硫化物Figure 8. Common metal mineral combinations in the mining area
(a) Stibnite and pyrite at the same time as iron-bearing dolomite; (b) Metal sulfides such as galena and sphalerite at the same time as fine-crystal quartz
Sti-Stibnite; Py-Pyrite; Ccp-Chalcopyrite; Sp-Sphalerite; Gn-Galena; Ank-Iron dolomite; Clay-Clay mineral图 10 部分脉体穿插关系的正交偏光和单偏光显微照片
Ank—铁白云石; Qtz—石英; Chl—绿泥石; Clay—黏土矿物; Sp—闪锌矿; Py—黄铁矿; Ccp—黄铜矿
a、b—石英脉切穿含矿铁白云石脉(a为正交偏光, b为单偏光); c、d—石英和黏土矿物脉切穿成矿期石英和绿泥石脉(c为正交偏光, d为单偏光)Figure 10. Cross-polarized light (a, c) and single-polarized light (b, d) micrographs of the intervening relationship of part of the veins
(a, b) Quartz veins cut through ore-bearing iron-manganese dolomite veins; (c, d) Quartz and clay mineral veins cut through ore-forming quartz and chlorite veins
Ank-Iron dolomite; Qtz-Quartz; Chl-Chlorite; Clay-Clay mineral; Sp-Sphalerite; Py-Pyrite; Ccp-Chalcopyrite -
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region, 1991. Regional geology of Inner Mongolia autonomous region[M]. Beijing: Geological Publishing House. 7-498. (in Chinese with English abstract) CARRANZA E J M, 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features[J]. Ore Geology Reviews, 35(3-4): 383-400. doi: 10.1016/j.oregeorev.2009.01.001 CHEN B L. Fracture tectonic development process and evolution of ore-control structure formation: the case of Zoujiashan uranium deposit[J]. Journal of Geomechanics, 2020, 26(3): 285-298. (in Chinese with English abstract) CHEN C Y, GAO Y F, WU H B, et al., 2016. Zircon U-Pb chronology of volcanic rocks in the Hailaer Basin, NE China and its geological implications[J]. Earth Science, 41(8): 1259-1274. (in Chinese with English abstract) CHEN Z G, ZHANG L C, WAN B, 2006. Geological setting and metallogenic prognosis of the De'erbugan polymetallic belt in the Da Hinggan Mountains[J]. Mineral Deposits, 25(S1): 11-14. (in Chinese with English abstract) CHERNICOFF C J, RICHARDS J P, ZAPPETTINI E O, 2002. Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical, and remote sensing evidence[J]. Ore Geology Reviews, 21(3-4): 127-155. doi: 10.1016/S0169-1368(02)00087-2 CHI G J, 2003. Composition of silver deposit in Deierbuer Inner Mongolia[J]. Mineral Resources and Geology, 17(S1): 439-442. (in Chinese with English abstract) COX S F, KNACKSTEDT M A, BRAUN J, 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems[J]. Reviews in Economic Geology, 14: 1-24. https://pubs.geoscienceworld.org/segweb/books/book/1227/chapter/107022596/Principles-of-Structural-Control-on-Permeability DAI M, YAN G S, LIU C, et al., 2016. The zircon U-Pb geochronology and the geochemistry of magmatic rocks and their constraints on the mineralization of Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Earth Science Frontiers, 23(5): 266-280. (in Chinese with English abstract) DUAN M X, REN Y S, HOU Z S, et al., 2014. Ore-forming fluid and ore genesis of the Biliya valley lead-zinc (silver) deposit in Erguna Region, Inner Mongolia[J]. Journal of Mineralogy and Petrology, 34(2): 60-67. (in Chinese with English abstract) DUAN P, FANG H B, 2003. The extensional direction of the Notheast part of Deerbugan deep fault: a remote sensing interpretation[J]. Remote Sensing for Land and Resources, (2): 1-4, 77. (in Chinese with English abstract) GE W C, LI X H, LIN Q, et al., 2001. Geochemistry of early cretaceous alkaline rhyolites from Hulun lake, Daxing'anling and its tectonic implications[J]. Chinese Journal of Geology, 36(2): 176-183. (in Chinese with English abstract) GE W C, WU F Y, ZHOU C Y, et al., 2005a. The age of the Tahe granite body in the northern Great Hinggan Mountains and its constraints on the structural ownership of the Erguna block[J]. Chinese Science Bulletin, 50(12): 1239-1247. (in Chinese) doi: 10.1360/csb2005-50-12-1239 GE W C, WU F Y, ZHOU C Y, et al., 2005b. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 21(3): 749-762. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200503016.htm GOLDFARB R J, GROVES D I, GARDOLL S, 2001. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 18(1-2): 1-75. doi: 10.1016/S0169-1368(01)00016-6 GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5): 7-27. doi: 10.1016/S0169-1368(97)00012-7 GUO Z J, LI J W, XU X Y, et al., 2016. Sm-Nd dating and REE composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, northeast China[J]. Lithos, 261: 307-321. doi: 10.1016/j.lithos.2016.03.006 HUANG S Q, DONG S W, ZHANG F Q, et al., 2014. Tectonic deformation and dynamic characteristics of the middle part of the Mongolia-Okhotsk Collisional Belt, Mongolia[J]. Acta Geoscientia Sinica, 35(4): 415-424. (in Chinese with English abstract) JAQUES A L, JAIRETH S, WALSHE J L, 2002. Mineral systems of Australia: An overview of resources, settings and processes[J]. Australian Journal of Earth Sciences, 49(4): 623-660. doi: 10.1046/j.1440-0952.2002.00946.x JIA L M, LIU H Z, JU J X, et al., 2018. Protolith reconstruction and geotectonic environmental research of Xinghuadukou rock group in Lvlin forestry center, Daxing'anling[J]. Journal of Geomechanics, 24(4): 544-554. (in Chinese with English abstract) KUTINA J, 1999. The type of crustal fracture and the control of mineralization formed by the discontinuity of the mantle root structure[J]. Geoscience Frontiers, 6(1): 29-53. LI J W, LIANG Y W, WANG X Y, et al., 2011. The origin of the Erdaohezi lead-zinc Deposit, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1745-1754, 1783. (in Chinese with English abstract) LI J W, ZHANG D Q, ZHAO S B, et al., 2006. Metallogenic regularity and prospecting targets in the southwest part of the Derbugan PAGEXXXetallogenic belt[J]. Mineral Deposits, 25(S1): 19-22. (in Chinese with English abstract) LI J Y, 1986. A preliminary study on the ancient suture zone between the Sino-Korean plate and the Siberian plate in eastern Inner Mongolia[J]. Chinese Science Bulletin, 31(14): 1093-1096. (in Chinese) doi: 10.1360/csb1986-31-14-1093 LI J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001 LI J Y, ZHANG J, YANG T N, et al., 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584-605. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904002.htm LI T G, WU G, LIU J, et al., 2016. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Lithos, 261: 340-355. doi: 10.1016/j.lithos.2016.04.029 LI Y X, BI Y Q, LIU F H, et al., 2020. The ore-controlling rule and metallogenic prediction of No. 21 vein structure in Sanhe lead-zinc deposit[J]. China Resources Comprehensive Utilization, 38(6): 46-51. (in Chinese with English abstract) LIN Q, GE W C, CAO L, et al., 2003. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: The bimodal volcanic rocks[J]. Geochimica, 32(3): 208-222. (in Chinese with English abstract) https://www.researchgate.net/publication/281425583_Geochemistry_of_Mesozoic_volcanic_rocks_in_Da_Hinggan_Ling_The_bimodal_volcanic_rocks LIU Y J, LI W M, FENG Z Q, et al., 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123-148. doi: 10.1016/j.gr.2016.03.013 MAO A S, XING L, LIU Z M, 2007. Geologic features, ore-hunting indicator of the Deerbuer Ag-Pb-Zn deposit[J]. Jilin Geology, 26(3): 18-21. (in Chinese with English abstract) MING Z, SUN J G, YAN J, et al., 2015. Forming environment and magmatic-hydrothermal evolution history of andesite in Deerbuer lead-zinc deposit of eastern Inner Mongolia: Zircon U-Pb dating[J]. Global Geology, 34(3): 590-598. (in Chinese with English abstract) http://html.rhhz.net/JLDXXBDQKXB/html/20170213.htm MUHTAR M N, WU C Z, BRZOZOWSKI M J, et al., 2020. Geochronology, geochemistry, and Sr-Nd-Pb-Hf-S isotopes of the wall rocks of the Kanggur gold polymetallic deposit, Chinese North Tianshan: Implications for petrogenesis and sources of ore-forming materials[J]. Ore Geology Reviews, 125: 103688. doi: 10.1016/j.oregeorev.2020.103688 ROBERT F, 1990. Structural Setting and Control of Gold-bearing Quartz Veins of the Vald'Or Area, Southeastern Abitibi Subprovince. University of Western Australia Short Course Notes, 24: 167-210. SHE H Q, LI J W, XIANG A P, et al., 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 28(2): 571-594. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201202019.htm SHUANG B, 2012. Metallogenic series and metallogenic prognosis of nonferrous and precious metal deposits in Manzhouli-Xinbarag Youqi[D]. Changchun: Jilin University. (in Chinese with English abstract) SIBSON R H, ROBERT F, POULSEN K H, 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 16(6): 551-555. doi: 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2 SILLITOE R H, 2000. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery[J]. Reviews in Economic Geology, 13: 315-345. https://pubs.geoscienceworld.org/segweb/books/book/1223/chapter/107028611/Gold-Rich-Porphyry-Deposits-Descriptive-and SUN G R, LI Y C, ZHANG Y, 2002. The basement tectonics of Ergun massif[J]. Geology and Resources, 11(3): 129-139. (in Chinese with English abstract) SUN L X, REN B F, ZHAO F Q, et al., 2013. Late Paleoproterozoic magmatic records in the Eerguna massif: evidences from the zircon U-Pb dating of granitic gneisses[J]. Geological Bulletin of China, 32(2-3): 341-352. (in Chinese with English abstract) https://www.researchgate.net/publication/279767980_Late_Paleoproterozoic_magmatic_records_in_the_Eerguna_massif_evidences_from_the_zircon_U-Pb_dating_of_granitic_gneisses WANG F, ZHOU X H, ZHANG L C, et al., 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 251(1-2): 179-198. doi: 10.1016/j.epsl.2006.09.007 WU F Y, SUN D Y, GE W C, et al., 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014 WU G, 2006. Metallogenic setting and metallogenesis of nonferrous-precious metals in Northern Da Hinggan Mountain[D]. Changchun: Jilin University. (in Chinese with English abstract) WU G, WANG G R, LIU J, et al., 2014. Metallogenic series and ore-forming pedigree of main ore deposits in northern Great Xing'an range[J]. Mineral Deposits, 33(6): 1127-1150. (in Chinese with English abstract) WU T T, ZHAO D F, SHAO J, et al., 2014. Geological and geochemical characteristics and genesis of the Biliyagu lead-zinc-silver deposit, Inner Mongolia[J]. Geology in China, 41(4): 1242-1252. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201404017.htm XU W L, JI W Q, PEI F P, et al., 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001 XU Z G, CHEN Y C, WANG D H, et al., 2008. Scheme of the classification of the minerogenetic units in China[M]. Beijing: Geological Publishing House. (in Chinese with English abstract) ZHANG B, LI J W, ZHANG D Q, et al., 2011. Geochemic features of Dongjun lead-zinc-silver deposit, Hailar Basin, Inner Mongolia[J]. Geological Review, 57(2): 253-260. (in Chinese with English abstract) ZHAO D, HAN R S, WANG J S, et al. 2020. Tectonic analysis of the Xiaohe Pb-Zn deposit in the northeast Yunnan mining area and its ore control model[J]. Journal of Geomechanics, 26(3): 345-362. (in Chinese with English abstract) ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613-641. (in Chinese with English abstract) ZHAO Y, 2017. Metallogenetic model and prospectings of the Pb-Zn-Ag deposit in the De'rbugan metallogenic belt, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) ZHAO Y, LV J C, ZHANG D B, et al., 2017. Rb-Sr isochron age of De'rbur Pb-Zn-Ag deposit in Erguna massif of northeast Inner Mongolia and its geological significance[J]. Mineral Deposits, 36(4): 893-904. (in Chinese with English abstract) http://html.rhhz.net/ysxb/20181210.htm ZHAO Y, LV J C, ZHANG P, et al., 2018. Characteristics of ore-forming fluids in the De'rbur Pb-Zn-Ag deposit in the NW Great Hinggan mountains and its significance[J]. Acta Geologica Sinica, 92(1): 142-153. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201801010.htm ZHAO Y, YANG Z Y, MA X H, 1994. Geotectonic transition from Paleoasian system and Paleotethyan system to Paleopacific active continental margin in eastern Asia[J]. Scientia Geologica Sinica, 29(2): 105-119. (in Chinese with English abstract) ZHOU Z H, 2011. Geology and geochemistry of Huanggang Sn-Fe deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract) 陈柏林. 2020. 断裂构造发育过程与控矿构造形成演化: 以邹家山铀矿床为例[J]. 地质力学学报, 26(3): 285-298. doi: 10.12090/j.issn.1006-6616.2020.26.03.027 陈崇阳, 高有峰, 吴海波, 等, 2016. 海拉尔盆地火山岩的锆石U-Pb年龄及其地质意义[J]. 地球科学, 41(8): 1259-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201608001.htm 陈志广, 张连昌, 万博, 2006. 大兴安岭得尔布干多金属成矿带地质背景与成矿预测[J]. 矿床地质, 25(S1): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1008.htm 池贵军, 2003. 内蒙古得耳布尔银矿床物质组分特征[J]. 矿产与地质, 17(S1): 439-442. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD2003S1051.htm 戴蒙, 严光生, 刘翠, 等, 2016. 内蒙古甲乌拉铅锌银矿区岩浆岩年代学、地球化学特征及其对成矿的约束[J]. 地学前缘, 23(5): 266-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201605032.htm 段明新, 任云生, 侯召硕, 等, 2014. 内蒙古额尔古纳地区比利亚谷铅锌(银)矿床成矿流体特征与矿床成因[J]. 矿物岩石, 34(2): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201402010.htm 段鹏, 方洪宾, 2003. 关于得尔布干深大断裂北东段延伸去向问题的遥感分析[J]. 国土资源遥感, (2): 1-4, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200302001.htm 葛文春, 李献华, 林强, 等, 2001. 呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J]. 地质科学, 36(2): 176-183. doi: 10.3321/j.issn:0563-5020.2001.02.005 葛文春, 吴福元, 周长勇, 等, 2005a. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 50(12): 1239-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200512014.htm 葛文春, 吴福元, 周长勇, 等, 2005b. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 21(3): 749-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503016.htm 黄始琪, 董树文, 张福勤, 等, 2014. 蒙古-鄂霍茨克构造带中段构造变形及动力学特征[J]. 地球学报, 35(4): 415-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404004.htm 贾立民, 刘洪章, 鞠佳星, 等, 2018. 大兴安岭绿林林场一带兴华渡口岩群原岩恢复及大地构造环境探讨[J]. 地质力学学报, 24(4): 544-554. doi: 10.12090/j.issn.1006-6616.2018.24.04.057 李进文, 张德全, 赵士宝, 等, 2006. 得尔布干成矿带西南段金属成矿规律及找矿方向[J]. 矿床地质, 25(S1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1010.htm 李进文, 梁玉伟, 王向阳, 等, 2011. 内蒙古二道河子铅锌矿成因研究[J]. 吉林大学学报(地球科学版), 41(6): 1745-1754, 1783. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106009.htm 李锦轶, 1986. 内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J]. 科学通报, 31(14): 1093-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198614014.htm 李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm 李永新, 毕亚强, 刘芳华, 等, 2020. 三河铅锌矿床21号脉构造控矿规律及成矿预测[J]. 中国资源综合利用, 38(6): 46-51. doi: 10.3969/j.issn.1008-9500.2020.06.015 林强, 葛文春, 曹林, 等, 2003. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002 毛爱生, 邢琳, 刘智明, 2007. 得耳布尔银铅锌矿床地质特征及找矿标志[J]. 吉林地质, 26(3): 18-21. doi: 10.3969/j.issn.1001-2427.2007.03.005 明珠, 孙景贵, 闫佳, 等, 2015. 内蒙古东部得耳布尔铅锌矿床安山岩的形成环境和岩浆热液演化史: 锆石U-Pb定年[J]. 世界地质, 34(3): 590-598. doi: 10.3969/j.issn.1004-5589.2015.03.002 内蒙古自治区地质矿产局, 1991. 内蒙古自治区区域地质志[M]. 北京: 地质出版社. 佘宏全, 李进文, 向安平, 等, 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 28(2): 571-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202019.htm 双宝, 2012. 满洲里-新巴尔虎右旗有色、贵金属矿床成矿系列与成矿预测[D]. 长春: 吉林大学. 孙广瑞, 李仰春, 张昱, 2002. 额尔古纳地块基底地质构造[J]. 地质与资源, 11(3): 129-139. doi: 10.3969/j.issn.1671-1947.2002.03.001 孙立新, 任邦方, 赵凤清, 等, 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录: 来自花岗片麻岩的锆石U-Pb年龄证据[J]. 地质通报, 32(2-3): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1012.htm 武广, 2006. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D]. 长春: 吉林大学. 武广, 王国瑞, 刘军, 等, 2014. 大兴安岭北部主要金属矿床成矿系列和区域矿床成矿谱系[J]. 矿床地质, 33(6): 1127-1150. doi: 10.3969/j.issn.0258-7106.2014.06.001 吴涛涛, 赵东芳, 邵军, 等, 2014. 内蒙古比利亚谷铅锌银矿床地质地球化学特征及成因[J]. 中国地质, 41(4): 1242-1252. doi: 10.3969/j.issn.1000-3657.2014.04.017 徐志刚, 陈毓川, 王登红, 等, 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社. 张斌, 李进文, 张德全, 等, 2011. 内蒙古海拉尔盆地东珺铅锌银矿床地球化学特征[J]. 地质论评, 57(2): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102013.htm 赵冻, 韩润生, 王加昇, 等. 2020. 滇东北矿集区小河铅锌矿床构造解析及其控矿模式[J]. 地质力学学报, 26(3): 345-362. doi: 10.12090/j.issn.1006-6616.2020.26.03.031 张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613-641. doi: 10.12090/j.issn.1006-6616.2019.25.05.059 赵越, 杨振宇, 马醒华, 1994. 东亚大地构造发展的重要转折[J]. 地质科学, 29(2): 105-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.000.htm 赵岩, 2017. 内蒙古得尔布干成矿带铅锌银矿成矿模式与找矿预测[D]. 北京: 中国地质大学(北京). 赵岩, 吕骏超, 张德宝, 等, 2017. 内蒙古东北部得耳布尔铅锌银矿床闪锌矿Rb-Sr年龄及地质意义[J]. 矿床地质, 36(4): 893-904. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704007.htm 赵岩, 吕骏超, 张朋, 等, 2018. 大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义[J]. 地质学报, 92(1): 142-153. doi: 10.3969/j.issn.0001-5717.2018.01.010 周振华, 2011. 内蒙古黄岗锡铁矿床地质与地球化学[D]. 北京: 中国地质科学院. -