XIANG An-tian, ZHU He-hua, DING Wen-qi, et al., 2007. MECHANIC RESPONSE OF A SHALLOW-EMBEDDED AND DOUBLE-ARCH TUNNEL UNDER PARTIAL PRESSURES DURING CONSTRUCTION. Journal of Geomechanics, 13 (3): 247-254.
Citation: SHI Ling, WANG Tao, XIN Peng, 2013. DEVELOPMENT CHARACTERISTICS OF THE GEO-HARZARDS IN BAOJI CITY, SHAANXI PROVINCE. Journal of Geomechanics, 19 (4): 351-363.

DEVELOPMENT CHARACTERISTICS OF THE GEO-HARZARDS IN BAOJI CITY, SHAANXI PROVINCE

More Information
  • This article makes use of detailed geo-hazard investigation data in 12 districts and counties of Baoji City in recent 7 years, based on collecting and sorting out main types and spatial distribution characteristics of geologic disasters in Baoji area, and analyses the general development characteristics, different development characteristics of various geologic disasters types in Baoji area and their impacts. It is preliminarily revealed that development types of geologic disasters in Baoji city mainly include:landslide, collapse, debris flow and unstable slope. These geo-hazards generally indicate clustering, unexpected, periodic and in chainlike. Development characteristics among all types of disasters, landslides and collapses happen most frequently and cause serious damage. Debris flows account for relatively rare part. Unstable slopes often occur together with collapses and mainly prone to collapse disaster. In each year, the heavy rainfall during rainy season will induce small scale landslides and collapses, especially the loess landslide and collapse in front of and behind of houses in urban residential area. Eluvia layer landslides and collapses due to slop cutting of mountain roads which occur frequently need to be paid special attention to monitoring, prevention and reduction of geologic disasters in Baoji city.

     

  • 隧道是在山岭地区修建高速公路常见的一种地下建筑物, 连拱和分离式隧道是目前高速公路隧道的两种形式。连拱隧道由于具有线形顺畅、使用占地面积小等特点, 而在城市道路用地受限、山区地形复杂、道路辗线困难等情况下获得了广泛的应用。从力学上讲, 连拱隧道施工是不可逆的非线性演化过程, 他的最终状态不是唯一的, 而是与应力路径或应力历史有关。其在施工过程中的受力演化机制非常复杂, 施工过程中围岩的稳定性、初衬和二衬的受力情况、中墙的受力特征和稳定性等已成为工程技术人员关注的焦点。有限元法在模拟隧道的分步开挖和适时支护方面具有独特的优点, 随着计算机技术的不断进步, 得到了越来越广泛的采用。当前, 有关单洞隧道施工力学行为的三维有限元分析的文献并不鲜见[1~3], 研究结果对隧道的设计和施工起了很积极的作用。对双连拱隧道的研究也已深入, 文献[4~6]用二维有限元对连拱隧道的力学行为进行了较为全面的研究, 文献[7~10]则采用三维数值模拟的方法进行研究, 但成果往往集中于某一方面, 如地表沉降、中墙受力状态的演变、塑性区的发展等, 如文献[11]那样用三维有限元对双连拱隧道浅埋偏压洞身段的施工力学响应行为进行系统研究和全面分析的文献尚不多见。

    本文所做的工作是:在考虑洞身浅埋偏压与洞口仰坡耦合作用的条件下, 采用功能强大的MARC有限元软件, 对某高速公路浅埋偏压连拱隧道出口段施工全过程进行三维数值模拟, 得出塑性区分布和发展、拱顶下沉、正应力与剪应力的集中和转移、中隔墙竖向应力随施工过程的变化规律, 研究结果对同类隧道的设计和施工具有参考和借鉴意义。

    隧道全长215米, 采用曲中墙连体隧道结构形式, 纵坡为2. 499 %。隧道区处于区域上塔前-赋春逆冲推覆构造带之塔前~赋春主断裂构造下盘, 主断裂距隧道洞身不足百米。受区域地质构造环境的影响, 隧道区裂隙发育, 岩体破碎。洞口均由千枚状砂质板岩强风化带组成, 岩土结构以蠕动状松散结构为主, 碎块状松散结构次之, 稳定性较差。

    X方向左右边界取至自然山脊和山谷线, 至隧道左右边墙距离约为5倍的单洞跨度, 两边施加X向的水平位移约束。在Y方向自由上边界取至地面, 下边界取至距开挖洞底4倍洞高处并施加竖向位移约束。在Z方向选取长度40m, 整个Z=40m平面取Z向水平位移约束。考虑实际施工情况, 对Z=0平面(洞口)而言, 坡体前缘线5m以下和洞周5m开外的交集部分取Z向水平位移约束。见图 1

    图  1  三维有限元模型网格图
    Figure  1.  3D FEM mesh of the model

    二衬、初衬和岩石都采用8节点三维实体等参单元, 共35700个; 锚杆用三维杆单元(图 2), 共3120个; 锚杆单元节点与实体单元节点完全重合, 总节点36393个。

    图  2  锚杆和初衬单元剖分图
    Figure  2.  Anchors and first lining in the model

    假设锚杆是线弹性材料, 隧洞围岩和混凝土是弹塑性材料, 采用Drucker—Plager屈服准则。初始荷载均为岩土体的自重荷载。

    另外, 隧洞锚杆是按梅花形布置, 径向间距0. 8米, 但是建模时为减少单元数量, 单元的尺寸大于实际的锚杆分布间距, 所以锚杆截面积为折算面积。围岩及其它材料的参数如表 1所示。

    表  1  模型材料力学参数一览表
    Table  1.  Mechanical parameters of model materials
    下载: 导出CSV 
    | 显示表格

    工况的模拟应尽可能与实际施工过程一致。但由于实际过程比较复杂, 而且某些施工过程可能同时进行, 因此只能依照实际的施工进度, 对施工步骤进行简化, 以尽量减少数值模拟计算的工作量, 同时又能够反映施工过程中所关心的问题。由于实际施工中一次性开挖长度经常可达30m, 考虑到最危险情况, 将所选取段按通槽开挖进行模拟。开挖采取“杀死”单元, 初期支护和二衬施做采取改变单元属性来“激活”[12]

    采用中导坑台阶法施工, 施工工序为:Lcase 0, 自重作用下初始状态的模拟; Lcase1, 开挖中导洞; Lcase2, 中导洞支护; Lcase3, 浇注中墙; Lcase4, 右洞上台阶开挖; Lcase5, 右洞上台阶初期支护; Lcase6, 开挖左洞上台阶; Lcase7, 左洞上台阶初期支护; Lcase8, 右洞下台阶开挖; Lcase9, 右洞下台阶初期支护; Lcase10, 浇筑右洞二衬及仰拱; Lcase11, 左洞下台阶开挖; Lcase12, 左洞下台阶初期支护; Lcase13, 浇筑左洞二衬及仰拱。右洞靠山谷一侧, 浅埋; 左洞靠山脊, 相对深埋。相对位置可参见图 1

    图 3图 4中:坐标0处为洞口边界, 埋深8m;坐标40处为洞内边界, 埋深40m。位移系MARC输出后, 用Excel消掉自重作用下的初始位移(Lcase 0)后生成。图 5图 6中: Lcase 0的拱顶下沉为自重作用下的初始值, 与施工影响无关。左右洞拱顶节点等间距(8m)分布, 两洞节点号由洞口至洞内依次增大, 左洞为92 —4395, 右洞为40 —3019。拱顶下沉小结:

    图  3  左洞拱顶下沉与进洞距离关系曲线图
    Figure  3.  Curves of vault displacement vs.distance for the left tunnel
    图  4  右洞拱顶下沉与进洞距离关系曲线图
    Figure  4.  Curves of vault displacement vs.distance for the right tunnel
    图  5  左洞拱顶下沉与工况步关系曲线图
    Figure  5.  Curves of vault displacement vs.loadcases at different vault points for the left tunnel
    图  6  右洞拱顶下沉与工况步关系曲线图
    Figure  6.  Curves of vault displacement vs.loadcases at different vault poins for the right tunnel

    1.从拱顶下沉与工况步关系曲线图(图 5图 6)看, 隧道位移释放主要发生在隧道中导洞开挖(Lcase1), 左、右洞各自上台阶(左洞Lcase6、右洞Lcase4)开挖之时, 其他施工步对拱顶下沉影响不大。

    2.埋深相对较大的山脊侧左洞拱顶下沉比山谷侧右洞拱顶下沉大, 前者最大4. 72cm, 后者最大3. 81cm, 均发生在进洞40m处(图 3图 4)。各工况步拱顶下沉由洞口至洞内有逐渐增大的趋势, 这很可能是由于埋深不断增大引起的。在浅埋条件下, 拱顶下沉有随埋深增大而增大的趋势, 洞内稳定不容忽视。

    3.实测拱顶下沉位移一般2~3cm, 计算值相对偏大, 但这正好反应了计算模型和参数选取的合理性。开挖是引起拱顶下沉的主要因素, 而监测工作往往是滞后于开挖的, 开挖初期释放掉的部分位移, 未能在监测数据里反映出来。

    a剪应力(图 7):

    图  7  Lcase2-Lcase7-Lcase10-Lcase13剪应力集中云图(进洞20m)
    Figure  7.  Shear stress distribution around the tunnel during construction

    剪应力集中小结:

    1.中导洞支护(Lcase2)的剪应力集中在墙底和拱腰上角点; 在左右洞上台阶开挖完毕后(Lcase7), 中墙的倒梯形墙基剪应力也非常集中; 中墙墙底的剪应力集中区随着左右洞二衬和仰拱的施作而减弱, 而墙顶的则增强。

    2.施工完毕, 仰拱成了剪应力集中的区域, 比二衬的拱墙和边墙发育, 说明仰拱在支护中发挥了很重要的作用, 应及时施作。

    b正应力(图 8):

    图  8  Lcase1-Lcase7-Lcase11 -Lcase13正应力集中云图(进洞20m)
    Figure  8.  Normal stress distribution around the tunnel during construction

    正应力集中小结:

    1.按MARC规定, 应力“拉正压负”。中导洞开挖完毕(Lcase1)隧道顶部即出现拉应力区, 由于岩土体抗拉能力弱, 因此, 顶部是易发生塌方的部位, 应超前或及时支护。

    2.左右洞上台阶开挖初支后(Lcase7)洞顶仍然出现明显的拉应力区, 山脊侧洞顶的拉应力区仍然较大。说明山脊侧更容易坍方, 初支还不能保证隧道的稳定, 应及时施作二衬。

    3.随着左洞下台阶的开挖, 隧道两侧边墙都出现了明显的压应力区, 这显然是由于隧道的偏压推挤作用引起的。

    4.随着二衬及仰拱的及时完成, 隧道周边应力转移, 压应力集中区基本消失, 二衬及仰拱成为正应力集中区。

    塑性区小结(图 9):

    图  9  Lcase2-Lcase7- Lcase11- Lcase13塑性区分布云图(进洞20m)
    Figure  9.  Plastic zone distribution around the tunnel during construction

    1.中导洞开挖初期支护后(Lcase2)两侧和墙脚皆有塑性区发育, 说明中导洞虽然截面小, 但其稳定性仍是一个不可忽视的问题。

    2.左右洞上台阶开挖后(Lcase7), 中导洞的支护仍未拆除, 所以其下部仍然出现较大塑性区, 这是由于中导洞支护拱向两侧传递推力的缘故。说明:该阶段不拆除中导洞支护, 可以发挥其支护作用, 有利于中隔墙稳定。

    3.施工支护完毕阶段(Lcase11、Lcase13)山脊侧中墙墙踵和隧道边墙塑性区比山谷侧发育, 说明施工完毕后山脊侧所受压力比山谷侧大, 失稳最易在山脊侧发生。

    图  10  Lcase3-Lcase7-Lcase8-Lcase10-Lcase11-Lcase13中墙σy分布云图(进洞20m)
    Figure  10.  σy distribution of the mid-leading wall during construction
    图  11  中墙横断面(距洞口20m)上部两侧节点σy 随工况步变化曲线图
    Figure  11.  Curves of σy vs.loadcases for the top mid-leading wall nodes on two sides
    图  12  中墙横断面(距洞口20m)下部两侧节点σy随工况步变化曲线图
    Figure  12.  Curves of σy vs.loadcases for the bottom mid-leading wall nodes on two sides

    说明:图 11图 12中应力拉正压负。由于施工中采用改变单元属性来“激活”支护, Lcase 0的节点σy值实质是岩体在该点的自重应力, Lcase1和Lcase2工况步由于中导洞开挖(杀死单元), 节点σy值为0。而中墙在Lcase3才施作, 所以, 分析中墙节点应力的变化应从Lcase3开始。为避免边界条件影响, 研究对象取距洞口20m的横断面。节点15362和14816分别为该横断面上部的山脊侧节点和山谷侧节点; 节点14753和15425分别为该横断面下部山脊侧节点和山谷侧节点。

    中墙竖向应力小结:

    1.中导洞开挖施作中墙后(Lcase3)σy基本为负值, 说明中隔墙主要受压, 但山脊侧受压更明显, 说明隧道偏压。

    2.从σy分布云图看(图 10), 在开挖形态对称条件下(Lcase7、Lcase11-Lcase13), 中墙竖对称条件下(Lcase7、Lcase11-Lcase13), 中墙竖向应力处于相对对称状态。随着右洞下台阶开挖(Lcase8), 中墙山谷侧成了受压集中区, 说明开挖导致山体有向外移动的趋势, 其推挤作用使中墙受到明显的偏压作用。右洞初衬和二衬的施作(Lcase10)并没使中墙偏压应力作出很大的调整, 说明非对称开挖是引起中墙偏压的关键因素。

    3.从中墙横断面(距洞口20m)上部两侧σy随工况步变化曲线看(图 11), 山脊侧上部节点15362在山谷侧右洞上台阶开挖后(Lcase3-Lcase4)出现了明显的拉应力, 山谷侧节点14816在山脊侧左洞开挖(Lcase6-Lcase7)后, 也出现了明显拉应力, 15362节点几乎同时由受拉变成受压状态, 而此时中墙下部节点(15425、14753)仍处于受压状态。

    4.从中墙横断面(距洞口20m)下部两侧σy随工况步变化曲线看(图 12), 中墙下部山脊侧节点14753在山谷侧右洞下台阶开挖(Lcase7-Lcase8)后出现最大竖向拉应力0. 903MPa, 山谷侧节点15425受最大压应力3. 031MPa。隧道施作完成后(Lcase13)中墙两侧所受压应力相差很小, 说明中墙倾覆失稳、拉裂破坏或压致破坏最可能在非对称开挖的单侧隧道的下台阶开挖期间发生。

    通过对连拱隧道的施工进行动态模拟, 深入理解了隧道的施工力学响应行为, 归纳起来, 可得到以下一些主要结论:

    1) 实测拱顶下沉位移一般2~3cm, 计算最大值4~5cm, 相对偏大, 但这正好反应了计算模型和参数选取的合理性。开挖后、支护前的位移变化最大, 而监测工作相对滞后, 初期开挖已经释放掉部分位移, 未能在监测数据里反映出来。浅埋条件下, 拱顶下沉随埋深增大而增大, 洞内稳定不容忽视。

    2) 施工完毕, 二衬和仰拱成了应力集中区, 是主要的受力结构, 施工中应及时施作以使其发挥作用。

    3) 开挖完毕, 抗拉能力弱的隧道顶部岩土体出现拉应力区, 是易发生塌方的部位, 应及时支护或采用大管棚等措施超前支护。左右洞上台阶开挖初支后洞顶仍然存在明显的拉应力区, 初支还不能保证隧道的稳定, 应及时施作二衬和仰拱。随着施工完毕, 两侧边墙附近压应力集中区转移消失, 二衬及仰拱呈现拉应力集中的状态, 隧道受力状态得到了良好改善。

    4) 中墙墙底的剪应力集中区和施工完毕后中墙墙踵出现的塑性区都说明中墙的基础稳定问题不可忽视。塑性区在左右洞上台阶开挖后最发育, 隧道在该施工段最易失稳, 施工时应作好相应的监测工作。由于偏压作用, 施工支护完毕, 中墙墙踵和隧道山脊侧边墙塑性区比山谷侧发育。可采用中墙基础锚固、在山脊侧施作偏压衬砌等方法, 来加强隧道的稳定性。

    5) 中墙竖向应力状态在施工过程中经过了复杂的调整, 在开挖形态非对称条件下, 隧道出现最不利的偏心受压(受拉)状态, 初衬和二衬的施作并未让此状态得到有效改善。而开挖形态对称施工步的中墙应力则处于相对对称状态。因此, 对称开挖是防止中墙倾覆失稳、拉裂破坏或压致破坏的最有效措施。

  • [1]
    石玲, 王涛, 辛鹏.宝鸡市地质灾害基本类型和空间分布特征[J].地质通报, 2013, 32(12):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312013.htm

    SHI Ling, WANG Tao, XIN Peng. Main types and spatial distribution characteristics of the geohazards in Baoji City[J]. Geological Bulletin of China, 2013, 32(12):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312013.htm
    [2]
    万兆发, 宋红香, 李海平, 等.宝鸡地区地质灾害发育特征浅析[J].陕西地质, 2004, 22(2):94~100. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDY200402012.htm

    WAN Zhao-fa, SONG Hong-xiang, LI Hai-ping, et al. The evolution characteristics of geological hazards occurring in Baoji District[J]. Geology of Shaanxi, 2004, 22(2):94~100. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDY200402012.htm
    [3]
    张春山, 何淑军, 辛鹏, 等.陕西省宝鸡市渭滨区地质灾害风险评价[J].地质通报, 2009, 28(8):1053~1063. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200908008.htm

    ZHANG Chun-shan, HE Shu-jun, XIN Peng, et al. Risk evaluation of geological hazards in Weibin District, Baoji City, Shaanxi Province, China[J]. Geological Bulletin of China, 2009, 28(8):1053~1063. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200908008.htm
    [4]
    韩金良, 燕军军, 孙炜锋, 等.陕西宝鸡陈仓区吴家湾滑坡风险评价[J].地质通报, 2009, 28(8):1118~1126.

    HAN Jin-liang, YAN Jun-jun, SUN Wei-feng, et al. Risk assessment of Wujiagou landslide in Chencang District, Baoji City, Shaanxi Province, China[J]. Geological Bulletin of China, 2009, 28(8):1118~1126.
    [5]
    张春山, 韩金良, 孙炜锋, 等.陕西省陇县地质灾害危险性分区评价[J].地质通报, 2008, 27(11):1795~1802. doi: 10.3969/j.issn.1671-2552.2008.11.006

    ZHANG Chun-shan, HAN Jin-liang, SUN Wei-feng, et al. Assessments of geohazard danger zoning in Longxian County, Shaanxi, China[J]. Geological Bulletin of China, 2008, 27(11):1795~1802. doi: 10.3969/j.issn.1671-2552.2008.11.006
    [6]
    吴树仁, 张春山, 等.宝鸡市陇县、金台区、渭滨区、陈仓区等12区县地质灾害详细调查报告[R].北京:中国地质科学院地质力学研究所, 2012.
    [7]
    李滨, 吴树仁, 石菊松.渭北黄土塬区滑坡发育特征及分布规律研究[J].水土保持研究, 2011, 18(5):212~216. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY201105046.htm

    LI Bin, WU Shu-ren, SHI Ju-song. Research on development characteristics and distribution of landslides in Weibei loess tableland area[J]. Research of Soil and Water Conservation, 2011, 18(5):212~216. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY201105046.htm
    [8]
    谭成轩, 雷伟志, 孙炜锋, 等.中国典型粘黄土区地质灾害风险评估危险性影响因素分析[J].地质通报, 2008, 27(11):1771~1781. doi: 10.3969/j.issn.1671-2552.2008.11.003

    TAN Cheng-xuan, LEI Wei-zhi, SUN Wei-feng, et al. An analysis of the danger influence factors of geohazard risk assessments in typical stick loess regions in China[J]. Geological Bulletin of China, 2008, 27(11):1771~1781. doi: 10.3969/j.issn.1671-2552.2008.11.003
    [9]
    谭成轩, 孙炜锋, 张春山, 等.宝鸡地区典型黄土剖面钻孔岩芯工程地质特性研究[J].工程地质学报, 2011, 19(5):732~748. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201105016.htm

    TAN Cheng-xuan, SUN Wei-feng, ZHANG Chun-shan, et al. Engineering geological features from borehole cores for typical loess section in Baoji region of loess plateau[J]. Journal of Engineering Geology, 2011, 19(5):732~748. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201105016.htm
    [10]
    李东林, 吴树仁, 张春山, 等."醉汉林"作为滑坡和边坡变形特征标志的意义——以陕西陇县地区为例[J].地质通报, 2007, 26(5):613~619. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200705015.htm

    LI Dong-lin, WU Shu-ren, ZHANG Chun-shan, et al. Significance of "drunk men woods" as an indication of landslides and slope deformation:A case study of the Longxian area, Shaanxi, China[J]. Geological Bulletin of China, 2007, 26(5):613~619. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200705015.htm
    [11]
    李滨. 多级旋转型黄土滑坡演化机理研究[D]. 西安: 长安大学, 2009. LI Bin. http://d.wanfangdata.com.cn/Thesis/Y1529056

    Study on the evolution mechanism of multiple rotational loess landslide[D]. Xi'an:Chang'an University, 2009. http://d.wanfangdata.com.cn/Thesis/Y1529056
    [12]
    何淑军, 张春山, 陈志华, 等.陕西省宝鸡市渭滨区夏呀河滑坡风险评估[J].地质通报, 2009, 28(8):1064~1076. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200908009.htm

    HE Shu-jun, ZHANG Chun-shan, CHEN Zhi-hua, et al. Risk evaluation for Xiayahe landslide in Weibin District, Baoji City, Shaanxi Province, China[J]. Geological Bulletin of China, 2009, 28(8):1064~1076. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200908009.htm
    [13]
    孙炜锋. 千阳县千河谷地典型粘黄土区地质灾害危险性评价研究[D]. 北京: 中国地质科学院, 2008. http://cdmd.cnki.com.cn/Article/CDMD-82501-2010024358.htm

    SUN Wei-feng. Study on geological hazard assessment in typical stick loess region in Qianhe valley, Qianyang County[D]. Beijing:Chinese Academy of Geological Science, 2008. http://cdmd.cnki.com.cn/Article/CDMD-82501-2010024358.htm
    [14]
    孟庆华. 秦岭山区地质灾害风险评估方法研究——以陕西凤县为例[D]. 北京: 中国地质科学院, 2011. http://cdmd.cnki.com.cn/article/cdmd-82501-1011152740.htm

    MENG Qing-hua. Study on the methods of geo-hazards risk assessment in Qinling Mountain:A case study of Feng County, Baoji City, Shaanxi Province[D]. Beijing:Chinese Academy of Geological Science, 2011. http://cdmd.cnki.com.cn/article/cdmd-82501-1011152740.htm
    [15]
    刘鑫, 陈奇, 吴树仁, 等.陕西陇县李家下滑坡风险评价[J].地质通报, 2008, 27(6):895~903. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200806021.htm

    LIU Xin, CHEN Qi, WU Shu-ren, et al. Risk assessment of the Lijiaxia landslide in Longxian County, Shaanxi, China[J]. Geological Bulletin of China, 2008, 27(6):895~903. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200806021.htm
    [16]
    辛鹏, 吴树仁, 石菊松, 等.基于降雨响应的黄土-基岩型滑坡失稳机制分析——以宝鸡市麟游县岭南滑坡为例[J].工程地质学报, 2012, 20(4):547~555. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201204011.htm

    XIN Peng, WU Shu-ren, SHI Ju-song, et al. Failure mechanism analysis of loess-rock landslide under rainfall:Take the Lingnan landslide in Linyou County of Baoji City for an example[J]. Journal of Engineering Geology, 2012, 20(4):547~555. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201204011.htm
    [17]
    杨为民, 吴树仁, 谭成轩, 等.陕西宝鸡地区对滑式黄土滑坡的特征及其碰撞诱发机理[J].地质通报, 2008, 27(11):1854~1861. doi: 10.3969/j.issn.1671-2552.2008.11.013

    YANG Wei-min, WU Shu-ren, TAN Cheng-xuan, et al. Characteristics of opposite-loess landslides and its collision induced in the Baoji area, Shaanxi, China[J]. Geological Bulletin of China, 2008, 27(11):1854~1861. doi: 10.3969/j.issn.1671-2552.2008.11.013
  • Relative Articles

    TANG Haibing, WU Jianjun, ZHANG Chunshan, YANG Weimin, QU Jingkai, MA Siqi, XU Chuancheng. 2024: Debris flow hazard analysis before and after improvement of Hanjia gully control engineering at the source area of the Fujiang River. Journal of Geomechanics, 30(4): 659-672. doi: 10.12090/j.issn.1006-6616.2023097
    ZHANG Jianyu, LYU Dunyu, LIU Songbo, WANG Cuiling, MENG Shuran. 2024: Development characteristics and risk assessment of geological hazards in the mountainous and hilly areas of western Zhengzhou City. Journal of Geomechanics, 30(4): 647-658. doi: 10.12090/j.issn.1006-6616.2022116
    LIU Xinghong, YAO Xin, YANG Bo, TANG Wenkun, ZHOU Zhenkai. 2023: InSAR-based indentification and spatial distribution analysis of active landslides in the Western Sichuan Plateau. Journal of Geomechanics, 29(1): 111-126. doi: 10.12090/j.issn.1006-6616.2022024
    GU Zhenkui, YAO Xin, LI Lingjing, TAO Tao. 2023: Applying stream power gradient in the investigation on spatial susceptibility of debris flow: A case of the Jinsha River Basin, China. Journal of Geomechanics, 29(1): 87-98. doi: 10.12090/j.issn.1006-6616.2022022
    LI Hongliang, GAO Bo, ZHANG Jiajia, TIAN You, CHEN Long, HUANG Hai, WANG Ling, LI Baoxing. 2022: Mechanism of rockfall coupled with endogenic and exogenic geological processes: A case study in the upper Triassic limestone mines in the Qamdo area, eastern Tibet. Journal of Geomechanics, 28(6): 995-1011. doi: 10.12090/j.issn.1006-6616.2022062
    ZHANG Haowei, LIU Fuzhen, WANG Junchao, ZHANG Jiajia. 2022: Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation. Journal of Geomechanics, 28(2): 306-318. doi: 10.12090/j.issn.1006-6616.2021117
    GONG Lingfeng, ZHANG Yunda, TIE Yongbo, GAO Yanchao, LIU Wen, LI Qingchun, ZHANG Bin, YANG Hong, LI Guanghui, LU Jiayan, LU Tuo. 2022: Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene. Journal of Geomechanics, 28(6): 1024-1034. doi: 10.12090/j.issn.1006-6616.20222826
    MA Siqi, YANG Weimin, ZHANG Chunshan, QU Jingkai, WAN Feipeng, TANG Haibing. 2022: Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou City. Journal of Geomechanics, 28(6): 1059-1070. doi: 10.12090/j.issn.1006-6616.20222829
    WANG Zhaobo, WANG Jiangyue, HE Lelong, ZHANG Jian, ZHAO Xiangyang, LI Baojie. 2021: Characteristics and evolution process of the ridge-groove sequence of the Jiulongtan glacial accumulation in Mengshan, Shandong: with the discussion on the difference of accumulation sequence of glacier and debris flow. Journal of Geomechanics, 27(1): 105-116. doi: 10.12090/j.issn.1006-6616.2021.27.01.011
    WAN Jiawei, FENG Chengjun, QI Bangshen, SUN Mingqian, YANG Xiaoxiao, WANG Huiqing, FAN Yulu, ZHANG Peng, MENG Jing, TAN Chengxuan. 2020: Characteristics and susceptibility evaluation of geohazard development in Shunping county, Hebei province. Journal of Geomechanics, 26(4): 604-614. doi: 10.12090/j.issn.1006-6616.2020.26.04.053
    WANG Junchao, SUN Jinhui. 2019: CHARACTERISTICS AND STABILITY ANALYSIS OF ROCK COLLAPSE OF LOW-ANGLED RED-BED SLOPE IN EAST SICHUAN. Journal of Geomechanics, 25(6): 1091-1098. doi: 10.12090/j.issn.1006-6616.2019.25.06.092
    XIANG Xiao-long, SUN Wei-feng, LI Guo-wei, HOU Chun-tang, TAN Cheng-xuan. 2015: ANALYSIS ON DEVELOPMENT CHARACTERISTICS AND FACTORS OF GEOLOGICAL DISASTERS IN YANJIN COUNTY, YUNNAN PROVINCE. Journal of Geomechanics, (1): 97-107.
    ZHANG Rui-duan, GUO Chang-bao, ZHANG Yong-shuang, FU Xiao-xiao. 2014: DEVELOPMENT CHARACTERISTICS AND PREVENTION SUGGESTIONS OF THE LEPA DEBRIS FLOW IN THE ANNING RIVER FAULT ZONE. Journal of Geomechanics, 20(2): 132-139.
    CHEN Xiao-yang, ZHANG Hong-yang, JI Dong, MAO Shi-long. 2011: DEFORMATION MONITORING AND STABILITY ANALYSIS OF AN UNSTABLE SLOPE IN CHONGQING CITY. Journal of Geomechanics, 17(4): 402-409.
    DING Ji-xin, YANG Zhi-fa, SHANG Yan-jun. 2006: CAUSE ANALYSIS AND QUANTITATIVE ZONATION OF MUDFLOW HAZARDS ALONG THE RAWU-LUNANG SECTION, SICHUAN-TIBET HIGHWAY. Journal of Geomechanics, 12(2): 203-210,226.
    WU Shu-ren. 2006: SOME PROGRESS IN THE STUDY OF SUDDEN GEOLOGICAL HAZARDS. Journal of Geomechanics, 12(2): 265-273.
    ZHANG Chun-shan, LI Guo-jun, ZHANG Ye-cheng, MA Yin-sheng. 2006: RISK EVALUATION OF AVALANCHE, LANDSLIDE AND MUDFLOW HAZARDS IN THE UPPER REACHES OF THE YELLOW RIVER. Journal of Geomechanics, 12(2): 211-218.
    LI Yu-shu, LI Tian-bin, GAO Guang-yun, CHENG Gang. 2004: HIGHWAY GEOLOGICAL HAZARDS OCCURRING ON MULTI-STAGE ACCUMULATIONS OF DEBRIS FLOWS——A CASE STUDY OF THE BIETUO SECTION OF THE WEST APPROACH OF THE ERLANG MOUNTAIN TUNNEL,SICHUAN-TIBET HIGHWAY. Journal of Geomechanics, 10(3): 260-267.
    ZHANG Chun-shan, ZHANG Ye-cheng, ZHANG Li-hai. 2004: DANGER ASSESSMENT OF COLLAPSES,LANDSLIDES AND DEBRIS FLOWS OF GEOLOGICAL HAZARDS IN CHINA. Journal of Geomechanics, 10(1): 27-32.
    ZHANG Chun-shan, ZHANG Ye-cheng, MA Yin-sheng. 2003: REGIONAL DANGEROUS ON THE GEOLOGICAL HAZARDS OF COLLAPSE,LANDSLIDE AND DEBRIS FLOW IN THE UPPER REACHES OF THE YELLOW RIVER. Journal of Geomechanics, 9(2): 143-153.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.3 %FULLTEXT: 22.3 %META: 72.1 %META: 72.1 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %China: 0.3 %China: 0.3 %Seattle: 0.6 %Seattle: 0.6 %United States: 1.8 %United States: 1.8 %上海: 4.6 %上海: 4.6 %东莞: 0.5 %东莞: 0.5 %中卫: 0.5 %中卫: 0.5 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %内江: 0.2 %内江: 0.2 %北京: 4.3 %北京: 4.3 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %南昌: 0.2 %南昌: 0.2 %双鸭山: 0.2 %双鸭山: 0.2 %台州: 0.2 %台州: 0.2 %咸阳: 0.2 %咸阳: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.8 %天津: 0.8 %安康: 1.4 %安康: 1.4 %宝鸡: 2.2 %宝鸡: 2.2 %宣城: 0.3 %宣城: 0.3 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %延安: 1.6 %延安: 1.6 %张家口: 4.6 %张家口: 4.6 %成都: 0.2 %成都: 0.2 %扬州: 0.3 %扬州: 0.3 %新乡: 0.2 %新乡: 0.2 %昆明: 0.3 %昆明: 0.3 %杭州: 0.5 %杭州: 0.5 %柳州: 0.3 %柳州: 0.3 %榆林: 0.2 %榆林: 0.2 %武汉: 1.6 %武汉: 1.6 %汕头: 0.2 %汕头: 0.2 %济南: 0.3 %济南: 0.3 %淄博: 0.2 %淄博: 0.2 %淮南: 0.2 %淮南: 0.2 %深圳: 0.2 %深圳: 0.2 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.5 %潍坊: 0.5 %烟台: 0.5 %烟台: 0.5 %石家庄: 2.6 %石家庄: 2.6 %福州: 0.5 %福州: 0.5 %芒廷维尤: 5.6 %芒廷维尤: 5.6 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 1.1 %苏州: 1.1 %衡水: 0.2 %衡水: 0.2 %西宁: 39.1 %西宁: 39.1 %西安: 9.1 %西安: 9.1 %连云港: 0.3 %连云港: 0.3 %郑州: 2.6 %郑州: 2.6 %酒泉: 0.3 %酒泉: 0.3 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %青岛: 0.5 %青岛: 0.5 %马鞍山: 0.2 %马鞍山: 0.2 %鸡西: 0.2 %鸡西: 0.2 %其他ChinaSeattleUnited States上海东莞中卫佛山保定内江北京十堰南京南昌双鸭山台州咸阳哥伦布嘉兴天津安康宝鸡宣城库比蒂诺延安张家口成都扬州新乡昆明杭州柳州榆林武汉汕头济南淄博淮南深圳漯河潍坊烟台石家庄福州芒廷维尤芝加哥苏州衡水西宁西安连云港郑州酒泉长春长沙青岛马鞍山鸡西

Catalog

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (450) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return