| Citation: | MA X D,2025. How do borehole observations characterize crustal stress?[J]. Journal of Geomechanics,31(6):1146−1158 doi: 10.12090/j.issn.1006-6616.2025153 |
| [1] |
AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. Dordrecht: Springer.
|
| [2] |
ASK M, PIERDOMINICI S, ROSBERG J E, 2024. Image analysis of acoustic data and interpretation of rock stress orientations for geothermal exploration in Gothenburg borehole GE-1, SW Sweden[J]. Geological Society, London, Special Publications, 546(1): 69-91. doi: 10.1144/SP546-2023-36
|
| [3] |
BARREE R D D, MISKIMINS J L L, GILBERT J V V, 2015. Diagnostic fracture injection tests: common mistakes, misfires, and misdiagnoses[J]. SPE Production & Operations, 30(2): 84-98.
|
| [4] |
BARTON C A, ZOBACK M D, 1994. Stress perturbations associated with active faults penetrated by boreholes: possible evidence for near-complete stress drop and a new technique for stress magnitude measurement[J]. Journal of Geophysical Research: Solid Earth, 99(B5): 9373-9390. doi: 10.1029/93JB03359
|
| [5] |
BARTON C A, ZOBACK M D, MOOS D, 1995. Fluid flow along potentially active faults in crystalline rock[J]. Geology, 23(8): 683-686. doi: 10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2
|
| [6] |
BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
|
| [7] |
BJØRLYKKE K, 2001. How faulting keeps the crust strong: comment and reply[J]. Geology, 29(2): 189-190. doi: 10.1130/0091-7613(2001)029<0189:HFKTCS>2.0.CO;2
|
| [8] |
BONNET E, BOUR O, ODLING N E, et al., 2001. Scaling of fracture systems in geological media[J]. Reviews of Geophysics, 39(3): 347-383. doi: 10.1029/1999RG000074
|
| [9] |
BRACE W F, KOHLSTEDT D L, 1980. Limits on lithospheric stress imposed by laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 85(B11): 6248-6252. doi: 10.1029/JB085iB11p06248
|
| [10] |
BRÖKER K, MA X D, 2022. Estimating the least principal stress in a granitic rock mass: systematic mini-frac tests and elaborated pressure transient analysis[J]. Rock Mechanics and Rock Engineering, 55(4): 1931-1954. doi: 10.1007/s00603-021-02743-1
|
| [11] |
BRÖKER K, MA X D, ZHANG S H, et al., 2024. Constraining the stress field and its variability at the BedrettoLab: elaborated hydraulic fracture trace analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 178: 105739. doi: 10.1016/j.ijrmms.2024.105739
|
| [12] |
BYERLEE J, 1978. Friction of rocks[J]. Pure and Applied Geophysics, 116: 615-626. doi: 10.1007/BF00876528
|
| [13] |
CHANG C D, JO Y, 2015. Heterogeneous in situ stress magnitudes due to the presence of weak natural discontinuities in granitic rocks[J]. Tectonophysics, 664: 83-97. doi: 10.1016/j.tecto.2015.08.044
|
| [14] |
CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)
|
| [15] |
CHESTER F M, EVANS J P, BIEGEL R L, 1993. Internal structure and weakening mechanisms of the San Andreas fault[J]. Journal of Geophysical Research: Solid Earth, 98(B1): 771-786. doi: 10.1029/92JB01866
|
| [16] |
CORNET F H, VALETTE B, 1984. In situ stress determination from hydraulic injection test data[J]. Journal of Geophysical Research: Solid Earth, 89(B13): 11527-11537. doi: 10.1029/JB089iB13p11527
|
| [17] |
CORNET F H, BÉRARD T, BOUROUIS S, 2007. How close to failure is a granite rock mass at a 5 km depth?[J]. International Journal of Rock Mechanics and Mining Sciences, 44(1): 47-66. doi: 10.1016/j.ijrmms.2006.04.008
|
| [18] |
CORNET F H, 2017. Vertical stress profiles and long-term rock mass rheology[R]. ARMA 17‐MTS lecture, San Francisco: American Rock Mechanics Association.
|
| [19] |
DAVATZES N C, HICKMAN S H, 2010. Stress, fracture, and fluid-flow analysis using acoustic and electrical image logs in hot fractured granites of the Coso geothermal field, California, U. S. A. [M]//PÖPPELREITER M, GARCÍA-CARBALLIDO C, KRAAIJVELD M. Dipmeter and borehole image log technology. Tulsa: American Association of Petroleum Geologists.
|
| [20] |
DAY‐LEWIS A, ZOBACK M, HICKMAN S, 2010. Scale‐invariant stress orientations and seismicity rates near the San Andreas Fault[J]. Geophysical Research Letters, 37(24): L24304.
|
| [21] |
DESROCHES J, KURKJIAN A L, 1999. Applications of wireline stress measurements[J]. SPE Reservoir Evaluation & Engineering, 2(5): 451-461.
|
| [22] |
DIAS L O, BOM C R, FARIA E L, et al., 2020. Automatic detection of fractures and breakouts patterns in acoustic borehole image logs using fast-region convolutional neural networks[J]. Journal of Petroleum Science and Engineering, 191: 107099. doi: 10.1016/j.petrol.2020.107099
|
| [23] |
DU L, LU X M, LI H Z, 2023. Automatic fracture detection from the images of electrical image logs using Mask R-CNN[J]. Fuel, 351: 128992. doi: 10.1016/j.fuel.2023.128992
|
| [24] |
ELLSWORTH W L, 2013. Injection-induced earthquakes[J]. Science, 341(6142): 1225942. doi: 10.1126/science.1225942
|
| [25] |
ELSWORTH D, SPIERS C J, NIEMEIJER A R, 2016. Understanding induced seismicity: observational data sets provide a clearer picture of the causes of induced seismicity[J]. Science, 354(6318): 1380-1381. doi: 10.1126/science.aal2584
|
| [26] |
FAN T Y, LÜ C X, LÜ G X, 2024. Analysis of crustal stress in tectonic ore-forming processes: research status and thought[J]. Geoscience, 38(4): 865-872. doi: 10.19657/j.geoscience.1000-8527.2024.086
|
| [27] |
FENG C J, LI B, LI H, et al., 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics, 28(6): 919-937. (in Chinese with English abstract)
|
| [28] |
GAO G Y, ZHANG M Y, WANG C H, et al., 2025. Fine division of recent tectonic stress field and stress profile construction in central Yunnan based on multi-source data[J]. Chinese Journal of Geophysics, 68(10): 3743-3765. (in Chinese with English abstract)
|
| [29] |
GUAN L N, JIANG G M, 2023. High-precision earthquake locations and deep fault characteristics beneath Xianyou Area, Fujian Province[J]. Geoscience, 37(1): 40-47. doi: 10.19657/j.geoscience.1000-8527.2022.071
|
| [30] |
GUGLIELMI Y, CAPPA F, LANÇON H, et al., 2014. ISRM suggested method for step-rate injection method for fracture in-situ properties (SIMFIP): using a 3-components borehole deformation sensor[J]. Rock Mechanics and Rock Engineering, 47(1): 303-311. doi: 10.1007/s00603-013-0517-1
|
| [31] |
GUGLIELMI Y, CAPPA F, AVOUAC J P, et al., 2015. Seismicity triggered by fluid injection–induced aseismic slip[J]. Science, 348(6240): 1224-1226. doi: 10.1126/science.aab0476
|
| [32] |
HAIMSON B, FAIRHURST C, 1967. Initiation and extension of hydraulic fractures in rocks[J]. Society of Petroleum Engineers Journal, 7(3): 310-318. doi: 10.2118/1710-PA
|
| [33] |
HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
|
| [34] |
HARDEBECK J L, HAUKSSON E, 2001. Crustal stress field in southern California and its implications for fault mechanics[J]. Journal of Geophysical Research: Solid Earth, 106(B10): 21859-21882. doi: 10.1029/2001JB000292
|
| [35] |
HEALY J H, RUBEY W W, GRIGGS D T, et al., 1968. The denver earthquakes[J]. Science, 161(3848): 1301-1310. doi: 10.1126/science.161.3848.1301
|
| [36] |
HUBBERT M K, WILLIS D G, 1957. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 210(1): 153-168. doi: 10.2118/686-G
|
| [37] |
HUDSON J A, CORNET F H, CHRISTIANSSON R, 2003. ISRM Suggested Methods for rock stress estimation—Part 1: strategy for rock stress estimation[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 991-998. doi: 10.1016/j.ijrmms.2003.07.011
|
| [38] |
ITO T, ZOBACK M D, 2000. Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole[J]. Geophysical Research Letters, 27(7): 1045-1048. doi: 10.1029/1999GL011068
|
| [39] |
KIRSCH E G, 1898. Die Theorie der Elastizit t und die Bed rfnisse der Festigkeitslehre[J]. Zeitshrift des Vereines deutscher Ingenieure, 42: 797-807.
|
| [40] |
KONG W L, HUANG L Y, YAO R, et al., 2021. Review of stress field studies in Sichuan-Yunnan region[J]. Progress in Geophysics, 36(5): 1853-1864. (in Chinese with English abstract)
|
| [41] |
KRIETSCH H, GISCHIG V, EVANS K, et al., 2019. Stress measurements for an in situ stimulation experiment in crystalline rock: integration of induced seismicity, stress relief and hydraulic methods[J]. Rock Mechanics and Rock Engineering, 52(2): 517-542. doi: 10.1007/s00603-018-1597-8
|
| [42] |
LEI X L, SU J R, WANG Z W, 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Science China Earth Sciences, 63(11): 1633-1660. doi: 10.1007/s11430-020-9646-x
|
| [43] |
LI B, XIE F R, HUANG J S, et al., 2022. In situ stress state and seismic hazard in the Dayi seismic gap of the Longmenshan thrust belt[J]. Science China Earth Sciences, 65(7): 1388-1398. doi: 10.1007/s11430-021-9915-4
|
| [44] |
LISLE R J, SRIVASTAVA D C, 2004. Test of the frictional reactivation theory for faults and validity of fault-slip analysis[J]. Geology, 32(7): 569-572. doi: 10.1130/G20408.1
|
| [45] |
LIU Z Y, WANG C H, XU X, et al., 2017. Slip tendency analysis of the mid-segment of Tan-Lu fault belt based on stress measurements[J]. Geoscience, 31(4): 869-876. (in Chinese with English abstract)
|
| [46] |
LOCKNER D A, MORROW C, MOORE D, et al., 2011. Low strength of deep San Andreas fault gouge from SAFOD core[J]. Nature, 472(7341): 82-85. doi: 10.1038/nature09927
|
| [47] |
LUNDSTERN J E, ZOBACK M D, 2020. Multiscale variations of the crustal stress field throughout North America[J]. Nature Communications, 11(1): 1951. doi: 10.1038/s41467-020-15841-5
|
| [48] |
MA X D, SAAR M O, FAN L S, 2020. Coulomb criterion-bounding crustal stress limit and intact rock failure: perspectives[J]. Powder Technology, 374: 106-110. doi: 10.1016/j.powtec.2020.07.044
|
| [49] |
MA X D, HERTRICH M, AMANN F, et al., 2022a. Multi-disciplinary characterizations of the Bedretto Lab–a unique underground geoscience research facility[J]. Solid Earth Discussions, 2021: 1-40.
|
| [50] |
MA X D, ZHANG S H, ZHANG X W, et al., 2022b. Lithology-controlled stress variations of Longmaxi shale–Example of an appraisal wellbore in the Changning area[J]. Rock Mechanics Bulletin, 1(1): 100002. doi: 10.1016/j.rockmb.2022.100002
|
| [51] |
MA X D, ZOBACK M D, 2020. Predicting lithology-controlled stress variations in the Woodford shale from well log data via viscoplastic relaxation[J]. SPE Journal, 25(5): 2534-2546. doi: 10.2118/201232-PA
|
| [52] |
MATTILA J, FOLLIN S, 2019. Does in situ state of stress affect fracture flow in crystalline settings?[J]. Journal of Geophysical Research: Solid Earth, 124(5): 5241-5253. doi: 10.1029/2018JB016791
|
| [53] |
MCCLURE M, FOWLER G, PICONE M, 2022. Best practices in DFIT interpretation: comparative analysis of 62 DFITs from nine different shale plays[C]//Proceedings of SPE international hydraulic fracturing technology conference & exhibition. Muscat: SPE: D031S011R001.
|
| [54] |
MCGARR A, ZOBACK M D, HANKS T C, 1982. Implications of an elastic analysis of in situ stress measurements near the San Andreas fault[J]. Journal of Geophysical Research: Solid Earth, 87(B9): 7797-7806. doi: 10.1029/JB087iB09p07797
|
| [55] |
MENG W, TIAN T, SUN D S, et al., 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model[J]. Journal of Geomechanics, 28(4): 537-549. (in Chinese with English abstract)
|
| [56] |
MORRIS A, FERRILL D A, HENDERSON D B, 1996. Slip-tendency analysis and fault reactivation[J]. Geology, 24(3): 275-278. doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
|
| [57] |
NASIM M Q, MAITI T, MOSAVAT N, et al., 2025. Automated detection of geological features: leveraging deep learning for beddings and fractures identification in image logs[J]. SPE Journal, 30(4): 1569-1587. doi: 10.2118/223976-PA
|
| [58] |
OBARA Y, SUGAWARA K, 2003. Updating the use of the CCBO cell in Japan: overcoring case studies[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1189-1203. doi: 10.1016/j.ijrmms.2003.07.007
|
| [59] |
OHANIAN J, 2016. In-situ Stress Rock Fracture Sensing with HD-FOS. Luna Innovations Incorporated.
|
| [60] |
PEŠKA P, ZOBACK M D, 1995. Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength[J]. Journal of Geophysical Research: Solid Earth, 100(B7): 12791-12811. doi: 10.1029/95JB00319
|
| [61] |
PLUMB R A, HICKMAN S H, 1985. Stress‐induced borehole elongation: a comparison between the four‐arm dipmeter and the borehole televiewer in the Auburn geothermal well[J]. Journal of Geophysical Research: Solid Earth, 90(B7): 5513-5521. doi: 10.1029/JB090iB07p05513
|
| [62] |
PROVOST A S, HOUSTON H, 2001. Orientation of the stress field surrounding the creeping section of the San Andreas Fault: evidence for a narrow mechanically weak fault zone[J]. Journal of Geophysical Research: Solid Earth, 106(B6): 11373-11386. doi: 10.1029/2001JB900007
|
| [63] |
RAJABI M, ZIEGLER M, HEIDBACH O, et al., 2024. Contribution of mine borehole data toward high-resolution stress mapping: an example from northern Bowen Basin, Australia[J]. International Journal of Rock Mechanics and Mining Sciences, 173: 105630. doi: 10.1016/j.ijrmms.2023.105630
|
| [64] |
RALEIGH C B, HEALY J H, BREDEHOEFT J D, 1976. An experiment in earthquake control at Rangely, Colorado[J]. Science, 191(4233): 1230-1237. doi: 10.1126/science.191.4233.1230
|
| [65] |
ROSHAN H, LI D Q, CANBULAT I, et al., 2023. Borehole deformation based in situ stress estimation using televiewer data[J]. Journal of Rock Mechanics and Geotechnical Engineering, 15(9): 2475-2481. doi: 10.1016/j.jrmge.2022.12.016
|
| [66] |
SCHAIBLE K E, SAFFER D M, 2025. State of stress across major faults in the Nankai subduction zone estimated from wellbore breakouts[J]. Journal of Geophysical Research: Solid Earth, 130(7): e2024JB030242. doi: 10.1029/2024JB030242
|
| [67] |
SCHMITT D R, CURRIE C A, ZHANG L, 2012. Crustal stress determination from boreholes and rock cores: fundamental principles[J]. Tectonophysics, 580: 1-26. doi: 10.1016/j.tecto.2012.08.029
|
| [68] |
SCHOENBALL M, DAVATZES N C, 2017. Quantifying the heterogeneity of the tectonic stress field using borehole data[J]. Journal of Geophysical Research: Solid Earth, 122(8): 6737-6756. doi: 10.1002/2017JB014370
|
| [69] |
SHAMIR G, ZOBACK M D, 1992. Stress orientation profile to 3.5 km depth near the San Andreas fault at Cajon Pass, California[J]. Journal of Geophysical Research: Solid Earth, 97(B4): 5059-5080. doi: 10.1029/91JB02959
|
| [70] |
SONE H, ZOBACK M D, 2014. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 124: 416-431. doi: 10.1016/j.petrol.2014.09.022
|
| [71] |
TOWNEND J, ZOBACK M D, 2000. How faulting keeps the crust strong[J]. Geology, 28(5): 399-402. doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
|
| [72] |
TRZECIAK M, DABROWSKI M, JAROSIŃSKI M, 2020. Stress distribution models in layered, viscoelastic sedimentary basins under tectonic and glacial loads[J]. Geophysical Journal International, 220(2): 768-793. doi: 10.1093/gji/ggz469
|
| [73] |
TRZECIAK M, SONE H, VOEGELI S, et al., 2022. Laboratory evaluation of the thermal breakout method for maximum horizontal stress measurement[J]. Rock Mechanics and Rock Engineering, 55(1): 51-69. doi: 10.1007/s00603-021-02617-6
|
| [74] |
VALLEY B, EVANS K F, 2009. Stress orientation to 5 km depth in the basement below Basel (Switzerland) from borehole failure analysis[J]. Swiss Journal of Geosciences, 102(3): 467.
|
| [75] |
WANG C H, SONG C K, GUO Q L, et al., 2014. Stress build-up in the shallow crust before the Lushan Earthquake based on the in-situ stress measurements[J]. Chinese Journal of Geophysics, 57(1): 102-114. (in Chinese with English abstract)
|
| [76] |
WANG K L, 2021. On the strength of subduction megathrusts[J]. Chinese Journal of Geophysics, 64(10): 3452-3465. (in Chinese with English abstract)
|
| [77] |
WANG W, SCHMITT D R, 2020. Automated borehole breakout interpretation from ultrasonic imaging: application to a deep borehole drilled into the crystalline crust[C]//Proceedings of the 54th U. S. rock mechanics/geomechanics symposium. ARMA: ARMA-2020-1270.
|
| [78] |
XIE F R, CUI X F, ZHAO J T, et al., 2004. Regionalization of the recent tectonic stress field in China and adjacent regions[J]. Chinese Journal of Geophysics, 47(4): 745-754. doi: 10.1002/cjg2.3545
|
| [79] |
XING P J, MCLENNAN J, MOORE J, 2022. Minimum in-situ stress measurement using temperature signatures[J]. Geothermics, 98: 102282. doi: 10.1016/j.geothermics.2021.102282
|
| [80] |
YANG J, GOODFELLOW S D, HARRISON J P, 2020. Automated extraction of borehole breakout properties from acoustic televiewer (ATV) data[C]//Proceedings of the 56th U. S. rock mechanics/geomechanics symposium. Santa Fe: ARMA: ARMA-2022-0408.
|
| [81] |
YANG Y H, SUN D S, MA X D, et al., 2025. A total system stiffness approach for determining shut-in pressure in hydraulic fracturing stress measurements[J]. International Journal of Rock Mechanics and Mining Sciences, 192: 106160. doi: 10.1016/j.ijrmms.2025.106160
|
| [82] |
YEOM J, KIM H, CHANG C D, et al., 2025. Automatic detection of borehole breakout for image logs using YOLO algorithm[J]. Geoenergy Science and Engineering, 252: 213925. doi: 10.1016/j.geoen.2025.213925
|
| [83] |
ZHANG C Y, DU S H, HE M C, et al., 2022. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 41(5): 954-968. (in Chinese with English abstract)
|
| [84] |
ZHANG J, KUANG W H, ZHANG X, et al., 2021. Global review of induced earthquakes in oil and gas production fields[J]. Reviews of Geophysics and Planetary Physics, 52(3): 239-265. (in Chinese with English abstract)
|
| [85] |
ZHANG J, KUANG W H, ZHANG X, et al., 2021. Global review of induced earthquakes in oil and gas production fields[J]. Reviews of Geophysics and Planetary Physics, 52(3): 239-265. (in Chinese with English abstract)
|
| [86] |
ZHANG S H, MA X D, 2021b. How does in situ stress rotate within a fault zone? Insights from explicit modeling of the frictional, fractured rock mass[J]. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022348. doi: 10.1029/2021JB022348
|
| [87] |
ZHANG S H, MA X D, BRÖKER K, et al., 2023a. Fault zone spatial stress variations in a granitic rock mass: revealed by breakouts within an array of boreholes[J]. Journal of Geophysical Research: Solid Earth, 128(8): e2023JB026477. doi: 10.1029/2023JB026477
|
| [88] |
ZHANG S H, MA X D, ZOBACK M, 2023b. Determination of the crustal friction and state of stress in deep boreholes using hydrologic indicators[J]. Rock Mechanics Bulletin, 2(1): 100024. doi: 10.1016/j.rockmb.2022.100024
|
| [89] |
ZHANG S H, MA X D, 2021. Global frictional equilibrium via stochastic, local Coulomb frictional slips[J]. Journal of Geophysical Research: Solid Earth, 126(7): e2020JB021404. doi: 10.1029/2020JB021404
|
| [90] |
ZOBACK M D, MOOS D, MASTIN L, et al., 1985. Well bore breakouts and in situ stress[J]. Journal of Geophysical Research: Solid Earth, 90(B7): 5523-5530. doi: 10.1029/JB090iB07p05523
|
| [91] |
ZOBACK M D, APEL R, BAUMGÄRTNER J, et al., 1993. Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole[J]. Nature, 365(6447): 633-635. doi: 10.1038/365633a0
|
| [92] |
ZOBACK M D, TOWNEND J, 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 336(1-4): 19-30. doi: 10.1016/S0040-1951(01)00091-9
|
| [93] |
ZOBACK M D, BARTON C A, BRUDY M, et al., 2003. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1049-1076. doi: 10.1016/j.ijrmms.2003.07.001
|
| [94] |
ZOBACK M D, 2010. Reservoir geomechanics[M]. Cambridge: Cambridge University Press.
|
| [95] |
ZOBACK M L, 1992. First‐and second‐order patterns of stress in the lithosphere: the World Stress Map Project[J]. Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728. doi: 10.1029/92JB00132
|
| [96] |
陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865.
|
| [97] |
丰成君, 李滨, 李惠, 等, 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨[J]. 地质力学学报, 28(6): 919-937. doi: 10.12090/j.issn.1006-6616.20222820
|
| [98] |
高桂云, 张梦云, 王成虎, 等, 2025. 基于多源数据的滇中现代构造应力场精细化分区及应力剖面构建[J]. 地球物理学报, 68(10): 3743-3765.
|
| [99] |
孔维林, 黄禄渊, 姚瑞, 等, 2021. 川滇地区应力场研究进展[J]. 地球物理学进展, 36(5): 1853-1864. doi: 10.6038/pg2021FF0171
|
| [100] |
雷兴林, 苏金蓉, 王志伟, 2020. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联[J]. 中国科学: 地球科学, 50(11): 1505-1532.
|
| [101] |
李兵, 谢富仁, 黄金水, 等, 2022. 龙门山断裂带大邑地震空区地应力状态与地震危险性[J]. 中国科学: 地球科学, 52(7): 1409-1418.
|
| [102] |
刘卓岩, 王成虎, 徐鑫, 等, 2017. 基于地应力实测数据分析郯庐断裂带中段滑动趋势[J]. 现代地质, 31(4): 869-876. doi: 10.3969/j.issn.1000-8527.2017.04.021
|
| [103] |
孟文, 田涛, 孙东生, 等, 2022. 基于原位地应力测试及流变模型的深部泥页岩储层地应力状态研究[J]. 地质力学学报, 28(4): 537-549.
|
| [104] |
王成虎, 宋成科, 郭启良, 等, 2014. 利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J]. 地球物理学报, 57(1): 102-114. doi: 10.6038/cjg20140110
|
| [105] |
王克林, 2021. 俯冲带大断层的强度问题[J]. 地球物理学报, 64(10): 3452-3465.
|
| [106] |
张重远, 杜世回, 何满潮, 等, 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 41(5): 954-968.
|
| [107] |
张捷, 况文欢, 张雄, 等, 2021. 全球油气开采诱发地震的研究现状与对策[J]. 地球与行星物理论评, 52(3): 239-265.
|