Volume 31 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
MENG W,CHEN Q C,GUO X Y,et al.,2025. Tectonic stress field and crustal strength of the central-southern Tanlu Fault Zone[J]. Journal of Geomechanics,31(6):1177−1187 doi: 10.12090/j.issn.1006-6616.2025107
Citation: MENG W,CHEN Q C,GUO X Y,et al.,2025. Tectonic stress field and crustal strength of the central-southern Tanlu Fault Zone[J]. Journal of Geomechanics,31(6):1177−1187 doi: 10.12090/j.issn.1006-6616.2025107

Tectonic stress field and crustal strength of the central-southern Tanlu Fault Zone

doi: 10.12090/j.issn.1006-6616.2025107
Funds:  This research is financially supported by the Deep Earth Probe and Mineral Resources Exploration–National Science and Technology Major Project (Grant No. 2024ZD1000706).
More Information
  • Received: 2025-08-08
  • Revised: 2025-11-11
  • Accepted: 2025-11-24
  • Available Online: 2025-12-03
  • Published: 2025-12-28
  •   Significance  The accurate estimation of crustal strength—the capacity of the lithosphere to resist tectonic deformation—is fundamental to both seismic hazard assessment and geodynamic studies.   Methods  This study integrates borehole logging data and focal mechanism solutions from the central-southern Tanlu Fault Zone.   Objective  The study aims to analyze the characteristics of the tectonic stress field.   Results  The study reveals that the stress states in the shallow and deep crust are generally consistent, with a predominant strike-slip stress regime and a preferential ENE–WSW orientation of the maximum horizontal principal stress. The regional fault friction coefficient is approximately 0.3, significantly lower than the 0.6–1.0 range suggested by Byerlee's law, indicating a moderate level of fault frictional strength. Furthermore, constrained by these findings, a crustal strength profile was established for the central-southern Tanlu Fault Zone.   Conclusion  This profile reveals a relatively strong upper and middle crust underlain by an extremely weak lower crust. Regional tectonic forces are primarily transmitted through the upper and middle crust. This extremely weak lower crust is closely linked to the destruction of the North China Craton since the Mesozoic, likely serving as both a consequence and a facilitating mechanism of the deep deformation processes that led to lithospheric thinning.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    BYERLEE J, 1978. Friction of rocks[J]. Pure and Applied Geophysics, 116(4-5): 615-626. doi: 10.1007/BF00876528
    [2]
    CARTER N L, TSENN M C, 1987. Flow properties of continental lithosphere[J]. Tectonophysics, 136(1-2): 27-63. doi: 10.1016/0040-1951(87)90333-7
    [3]
    CHEN L, CHENG C, WEI Z G, 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 286(1-2): 171-183. doi: 10.1016/j.jpgl.2009.06.022
    [4]
    CUI J W, WANG L J, LI P W, et al., 2009. Wellbore breakouts of the main borehole of Chinese Continental Scientific Drilling (CCSD) and determination of the present tectonic stress state[J]. Tectonophysics, 475(2): 220-225. doi: 10.1016/j.tecto.2009.03.021
    [5]
    DENG Y F, FAN W M, ZHANG Z J, BADAL J. , 2013. Geophysical evidence on segmentation of the Tancheng-Lujiang fault and its implications on the lithosphere evolution in East China[J]. Journal of Asian Earth Sciences, 78, 263-276.
    [6]
    FENG J K, YAO H J, CHEN L, et al., 2022. Ongoing lithospheric alteration of the North China Craton revealed by surface-wave tomography and geodetic observations[J]. Geophysical Research Letters, 49(14): e2022GL099403. doi: 10.1029/2022GL099403
    [7]
    GAO Y, WU J, YI G X, et al., 2010. Crust-mantle coupling in North China: preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin, 55(31): 3599-3605. doi: 10.1007/s11434-010-4135-y
    [8]
    GRIPP A E, GORDON R G, 2002. Young tracks of hotspots and current plate velocities[J]. Geophysical Journal International, 150(2): 321-361. doi: 10.1046/j.1365-246X.2002.01627.x
    [9]
    HARDEBECK J L, SHEARER P M, 2002. A new method for determining first-motion focal mechanisms[J]. Bulletin of the Seismological Society of America, 92(6): 2264-2276. doi: 10.1785/0120010200
    [10]
    HARDEBECK J L, SHEARER P M, 2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes[J]. Bulletin of the Seismological Society of America, 93(6): 2434-2444. doi: 10.1785/0120020236
    [11]
    HARDEBECK J L, MICHAEL A J, 2004. Stress orientations at intermediate angles to the San Andreas Fault, California[J]. Journal of Geophysical Research: Solid Earth, 109(B11): B11303.
    [12]
    HARDEBECK J L, MICHAEL A J, 2006. Damped regional-scale stress inversions: methodology and examples for southern California and the Coalinga aftershock sequence[J]. Journal of Geophysical Research: Solid Earth, 111(B11): B11310.
    [13]
    HASEGAWA A, YOSHIDA K, OKADA T, 2011. Nearly complete stress drop in the 2011 MW 9.0 off the Pacific coast of Tohoku Earthquake[J]. Earth, Planets and Space, 63(7): 35.
    [14]
    HUANG B, KUSKY T M, JOHNSON T E, et al., 2020. Paired metamorphism in the Neoarchean: a record of accretionary-to-collisional orogenesis in the North China Craton[J]. Earth and Planetary Science Letters, 543: 116355. doi: 10.1016/j.jpgl.2020.116355
    [15]
    HUANG Z C, WANG L S, ZHAO D P, et al., 2011. Seismic anisotropy and mantle dynamics beneath China[J]. Earth and Planetary Science Letters, 306(1-2): 105-117. doi: 10.1016/j.jpgl.2011.03.038
    [16]
    JIANG G Z, HU S B, SHI Y Z, et al., 2019. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 753: 36-48. doi: 10.1016/j.tecto.2019.01.006
    [17]
    JIN J Q, LUO S, YAO H J, et al., 2023. Dense array ambient noise tomography reveals the shallow crustal velocity structure and deformation features in the Weifang segment of the Tanlu fault zone[J]. Chinese Journal of Geophysics, 66(2): 558-575. (in Chinese with English abstract)
    [18]
    KIRBY S H, 1983. Rheology of the lithosphere[J]. Reviews of Geophysics, 21(6): 1458-1487. doi: 10.1029/RG021i006p01458
    [19]
    KOHLSTEDT D L, EVANS B, MACKWELL S J, 1995. Strength of the lithosphere: constraints imposed by laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 100(B9): 17587-17602. doi: 10.1029/95JB01460
    [20]
    LI J H, DONG S W, CAWOOD P A, et al., 2023. Cretaceous long-distance lithospheric extension and surface response in South China[J]. Earth-Science Reviews, 243: 104496. doi: 10.1016/j.earscirev.2023.104496
    [21]
    LIU Q Y, ZHANG L Y, ZHANG C, et al., 2016. Lithospheric thermal structure of the North China Craton and its geodynamic implications[J]. Journal of Geodynamics, 102: 139-150. doi: 10.1016/j.jog.2016.09.005
    [22]
    LUO M, GLOVER P W J, PAN H P, 2019. A reassessment of the stress and natural fracture orientations from analysis of image logs in the Chinese Continental Scientific Drilling Program borehole at Donghai county, Jiangsu province, China[J]. Journal of Asian Earth Sciences, 169: 11-20. doi: 10.1016/j.jseaes.2018.10.014
    [23]
    MARTÍNEZ-GARZÓN P, KWIATEK G, ICKRATH M, et al., 2014. MSATSI: a MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool[J]. Seismological Research Letters, 85(4): 896-904. doi: 10.1785/0220130189
    [24]
    MENG W, LIN W R, CHEN Q C, et al., 2023. Spatial and temporal stress variations before and after the 2008 Wenchuan MW 7.9 Earthquake and its implications: a study based on borehole stress data[J]. Acta Geologica Sinica - English Edition, 97(1): 226-242. doi: 10.1111/1755-6724.14965
    [25]
    MIAO W P, NIU F L, CHEN H C, 2023. Sharp changes of crustal seismic anisotropy across the central Tanlu fault zone in East China[J]. Geophysical Research Letters, 50(1): e2022GL099184. doi: 10.1029/2022GL099184
    [26]
    NI H Y, LIU Z M, HE K, 2013. Study on focal mechanisms of moderate-small earthquakes and characteristics of recent tectonic stress field in the Anhui sector of Tanlu fault zone[J]. China Earthquake Engineering Journal, 35(3): 677-683. (in Chinese with English abstract)
    [27]
    PASQUALE V, CHIOZZI P, VERDOYA M, 2010. Tectonothermal processes and mechanical strength in a recent orogenic belt: northern Apennines[J]. Journal of Geophysical Research: Solid Earth, 115(B3): B03301.
    [28]
    RANALLI G, 1991. Regional variations in lithosphere rheology from heat flow observations[M]//ČERMÁK V, RYBACH L. Terrestrial heat flow and the lithosphere structure. Berlin: Springer: 1-22.
    [29]
    SCHOLZ C H, 1988. The brittle-plastic transition and the depth of seismic faulting[J]. Geologische Rundschau, 77(1): 319-328. doi: 10.1007/BF01848693
    [30]
    SCHOLZ C H, 2000. Evidence for a strong San Andreas fault[J]. Geology, 28(2): 163-166. doi: 10.1130/0091-7613(2000)28<163:EFASSA>2.0.CO;2
    [31]
    SCHOLZ C H, 2002. The mechanics of earthquakes and faulting[M]. 2nd ed. Cambridge: Cambridge University Press: 504.
    [32]
    SIMPSON R W, 1997. Quantifying Anderson’s fault types[J]. Journal of Geophysical Research: Solid Earth, 102(B8): 17909-17919. doi: 10.1029/97JB01274
    [33]
    SUN Y J, DONG S W, FAN T Y, et al., 2013. 3D rheological structure of the continental lithosphere beneath China and adjacent regions[J]. Chinese Journal of Geophysics, 56(9): 2936-2946. (in Chinese with English abstract)
    [34]
    SUN Y J, HUANG Y, JIANG H L, et al., 2015. Tectonic stress field and segmention characteristics in the Shandong-Jiangsu-Anhui segment of the Tancheng-Lujiang fault zone[J]. Earthquake, 35(3): 66-75. (in Chinese with English abstract)
    [35]
    TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905
    [36]
    TIAN F F, LEI J S, XU X W, 2020. Teleseismic P-wave crustal tomography of the Weifang segment on the Tanlu fault zone: a case study based on short-period dense seismic array experiment[J]. Physics of the Earth and Planetary Interiors, 306: 106521. doi: 10.1016/j.pepi.2020.106521
    [37]
    TOWNEND J, ZOBACK M D, 2001. Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system[M]//HOLDSWORTH R E, STRACHAN R A, MAGLOUGHLIN J F, et al. The nature and tectonic significance of fault zone weakening. London: Geological Society: 13-21.
    [38]
    VAVRYČUK V, 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms[J]. Geophysical Journal International, 199(1): 69-77. doi: 10.1093/gji/ggu224
    [39]
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774
    [40]
    WANG X F, LI Z J, CHEN B L, et al. , 2000. Tanlu fault belt[M]. Beijing: Geological Publishing House. (in Chinese)
    [41]
    WANG Y, 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation[J]. Physics of the Earth and Planetary Interiors, 126(3-4): 121-146. doi: 10.1016/S0031-9201(01)00251-5
    [42]
    WEERTMAN J, 1970. The creep strength of the Earth's mantle[J]. Reviews of Geophysics, 8(1): 145-168. doi: 10.1029/RG008i001p00145
    [43]
    WIBBERLEY C A J, YIELDING G, DI TORO G, 2008. Recent advances in the understanding of fault zone internal structure: a review[M]//WIBBERLEY C A J, KURZ W, IMBER J, et al. The internal structure of fault zones: implications for mechanical and fluid-flow properties. London: Geological Society: 5-33.
    [44]
    WU X Y, XU X W, YU G H, et al, 2024. The China Active Faults Database (CAFD) and its web system[J]. Earth System Science Data, 16(7): 3391-3417. doi: 10.5194/essd-16-3391-2024
    [45]
    YANG Y, WANG W, WANG J F, 2017. Characteristics of regional stress field and latest crustal deformation in middle-southern segment of Tan-Lu fault zone[J]. China Earthquake Engineering Journal, 39(S1): 14-19. (in Chinese with English abstract)
    [46]
    YU Y, CHEN Y J, 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: eastward Tibetan asthenospheric flow around the southern Ordos[J]. Earth and Planetary Science Letters, 455: 1-6. doi: 10.1016/j.jpgl.2016.08.026
    [47]
    ZANG S X, LI C, WEI R Q, 2002. The determination of rheological mechanics of lithosphere and the influencing factors on the rheological strength of lithosphere[J]. Progress in Geophysics, 17(1): 50-60. (in Chinese with English abstract)
    [48]
    ZHANG J H, ZHAO G Z, XIAO Q B, et al., 2010. Analysis of electric structure of the central Tan-Lu fault zone (Yi-Shu fault zone, 36°N) and seismogenic condition[J]. Chinese Journal of Geophysics, 53(3): 605-611. (in Chinese with English abstract)
    [49]
    ZHANG S Y, HOUSTON H, WANG B H, & ZHANG H. (2024, 09). Mapping of absolute deviatoric stresses around two California earthquakes reveals a very weak crust[C]. Poster Presentation at 2024 SCEC Annual Meeting.
    [50]
    ZHAO D P, TIAN Y, LEI J S, et al., 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. doi: 10.1016/j.pepi.2008.11.009
    [51]
    ZHAO L S, HELMBERGER D V, 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1): 91-104.
    [52]
    ZHONG S J, WU J P, SI Z Y, et al., 2024. 3D high-resolution S-wave velocity structure of the lithosphere beneath North China Craton based on Eikonal surface wave tomography[J]. Acta Seismologica Sinica, 46(4): 578-599. (in Chinese with English abstract)
    [53]
    ZHU L P, HELMBERGER D V, 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 1634-1641. doi: 10.1785/BSSA0860051634
    [54]
    ZHU R X, CHEN L, WU F Y, et al., 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 789-797. doi: 10.1007/s11430-011-4203-4
    [55]
    ZHU Y Q, HUANG Z C, JI C, et al., 2024. Seismotectonic segmentation controlled by magmatic underplating in the central-southern segment of Tanlu fault zone, eastern China[J]. Earth and Planetary Science Letters, 644: 118946. doi: 10.1016/j.jpgl.2024.118946
    [56]
    ZOBACK M D, APEL R, BAUMGÄRTNER J, et al., 1993. Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole[J]. Nature, 365(6447): 633-635. doi: 10.1038/365633a0
    [57]
    ZOBACK M D, TOWNEND J, 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 336(1-4): 19-30. doi: 10.1016/S0040-1951(01)00091-9
    [58]
    ZOBACK M L, 1992. First- and second-order patterns of stress in the lithosphere: the World Stress Map Project[J]. Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728. doi: 10.1029/92JB00132
    [59]
    ZOU Z H, ZHOU H W, LIN F S, et al., 2022. High-resolution teleseismic tomographic crustal imaging for potential seismogenic segment of the central Tan-Lu Fault Zone, East China[J]. Tectonophysics, 823: 229196. doi: 10.1016/j.tecto.2021.229196
    [60]
    高原, 吴晶, 易桂喜, 等, 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系[J]. 科学通报, 55(29): 2837-2843. doi: 10.1007/s11434-010-4135-y
    [61]
    靳佳琪, 罗松, 姚华建, 等, 2023. 密集台阵背景噪声成像揭示郯庐断裂带潍坊段地壳浅层速度结构及变形特征[J]. 地球物理学报, 66(2): 558-575. doi: 10.6038/cjg2022P0934
    [62]
    倪红玉, 刘泽民, 何康, 2013. 郯庐断裂带安徽段中小地震震源机制及现代应力场特征[J]. 地震工程学报, 35(3): 677-683. doi: 10.3969/j.issn.1000-0844.2013.03.0677
    [63]
    孙业君, 黄耘, 江昊琳, 等, 2015. 郯庐断裂带鲁苏皖段构造应力场及分段特征研究[J]. 地震, 35(3): 66-75. doi: 10.3969/j.issn.1000-3274.2015.03.007
    [64]
    孙玉军, 董树文, 范桃园, 等, 2013. 中国大陆及邻区岩石圈三维流变结构[J]. 地球物理学报, 56(9): 2936-2946. doi: 10.6038/cjg20130908
    [65]
    王小凤, 李中坚, 陈伯林, 等, 2000. 郯庐断裂带[M]. 北京: 地质出版社.
    [66]
    杨云, 王维, 王俊菲, 2017. 郯庐断裂带中南段应力场及变形特征[J]. 地震工程学报, 39(S1): 14-19. doi: 10.3969/j.issn.1000-0844.2017.Supp.014
    [67]
    臧绍先, 李昶, 魏荣强, 2002. 岩石圈流变机制的确定及影响岩石圈流变强度的因素[J]. 地球物理学进展, 17(1): 50-60. doi: 10.3969/j.issn.1004-2903.2002.01.006
    [68]
    张继红, 赵国泽, 肖骑彬, 等, 2010. 郯庐断裂带中段(沂沭断裂带)电性结构研究与孕震环境[J]. 地球物理学报, 53(3): 605-611. doi: 10.3969/j.issn.0001-5733.2010.03.014
    [69]
    钟世军, 吴建平, 司政亚, 等, 2024. 基于程函面波成像的华北克拉通岩石圈三维高分辨率S波速度结构研究[J]. 地震学报, 46(4): 578-599. doi: 10.11939/jass.20230052
    [70]
    朱日祥, 陈凌, 吴福元, 等, 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学: 地球科学, 41(5): 583-592. doi: 10.1007/s11430-011-4203-4
  • 加载中

Catalog

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (121) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return