Volume 31 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
LV B,CHENG L M,ZHANG Y F,et al.,2025. Mechanical properties of Carboniferous volcanic rock reservoirs and correction of dynamic and static parameters[J]. Journal of Geomechanics,31(6):1296−1309 doi: 10.12090/j.issn.1006-6616.2025102
Citation: LV B,CHENG L M,ZHANG Y F,et al.,2025. Mechanical properties of Carboniferous volcanic rock reservoirs and correction of dynamic and static parameters[J]. Journal of Geomechanics,31(6):1296−1309 doi: 10.12090/j.issn.1006-6616.2025102

Mechanical properties of Carboniferous volcanic rock reservoirs and correction of dynamic and static parameters

doi: 10.12090/j.issn.1006-6616.2025102
Funds:  This research is financially supported by the National Science and Technology Major Project (Grant No. 2025ZD1401404), the General Program of the National Natural Science Foundation of China (Grant No.52174011), and the Key Program of the National Natural Science Foundation of China (Grant No. 52434001).
More Information
  • Received: 2025-08-01
  • Revised: 2025-12-01
  • Accepted: 2025-12-05
  • Available Online: 2025-12-12
  • Published: 2025-12-28
  •   Objective  To address the challenges posed by the strong heterogeneity of the volcanic reservoirs of the Carboniferous C2 Formation in the Junggar Basin and the low accuracy of rock mechanical parameters derived from logging data, this study aims to precisely determine the relationship between dynamic and static mechanical parameters for typical lithologies to enhance the reliability of static parameter predictions.   Methods  Based on systematic laboratory testing of four representative lithologies (andesite, basalt, tuff, and volcanic breccia), lithology-specific dynamic-to-static conversion models were established and calibrated by introducing a confining pressure sensitivity parameter. An integrated microstructural analysis via thin-section and scanning electron microscope (SEM) observations was conducted.   Results  The research yielded clear quantitative relationships between the dynamic and static parameters for all four lithologies and confirmed the high accuracy of the newly established, confining-pressure-corrected conversion model.   Conclusion  The analysis further reveals an intrinsic link between the differences in macroscopic mechanical properties and dynamic-static parameter responses on the one hand and specific microstructural characteristics(including mineral composition, grain structure, and pore-fracture development) on the other. This link confirms the fundamental control that the rock microstructure has. The model developed and calibrated in this study effectively improves the accuracy of predicting static mechanical parameters, thereby providing critical technical and theoretical support for accurately obtaining these essential parameters from conventional logging data.   Significance  This model is of significant practical value for the efficient exploration and development of similar volcanic hydrocarbon reservoirs.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    BAHRAMI B , FEREIDOONI D, KHANLARI G, et al. , 2025. Micro and macrostructural investigations on the fracture mechanism of the brittle rocks under compressive loading[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(3): 329-351.
    [2]
    CHEN M, 2004. Review of study on rock mechanics at great depth and its applications to petroleum engineering of China[J]. Chinese Journal of Rock Mechanics and Engineering, 23(14): 2455-2462. (in Chinese with English abstract)
    [3]
    CHEN Z H, WANG X L, ZHA M, et al., 2016. Characteristics and formation mechanisms of large volcanic rock oil reservoirs: a case study of the Carboniferous rocks in the Kebai fault zone of Junggar Basin, China[J]. AAPG Bulletin, 100(10): 1585-1617. doi: 10.1306/04151614066
    [4]
    CHEN Z R, LIU W, SHI X, et al. Prediction of in-situ stress field of deep coalbed methane considering the coalbed structure differences[J/OL]. Coal Science and Technology, 2025: 1-11. https://link.cnki.net/urlid/11.2402.td.20250708.1135.006. (in Chinese with English abstract)
    [5]
    CUI Y, QU Z, ZHANG Y H, et al., 2018. Experimental research on dynamic and static elastic mechanics parameters of mud shale[J]. Journal of Guangxi University (Natural Science Edition), 43(6): 2284-2291. (in Chinese with English abstract)
    [6]
    ERLING F, HOLT R M, HORSRUD P, et al. , 2008. Petroleum related rock mechanics[J]. Amsterdam: Elsevier: 445-473.
    [7]
    GAO S, GONG L, LIU X B, et al., 2020. Distribution and controlling factors of natural fractures in deep tight volcanic gas reservoirs in Xujiaweizi area, Northern Songliao Basin[J]. Oil & Gas Geology, 41(3): 503-512. (in Chinese with English abstract)
    [8]
    GUO X S, 2022. Discussion and research direction of future onshore oil and gas exploration in China[J]. Earth Science, 47(10): 3511-3523. (in Chinese with English abstract)
    [9]
    LI J C, TIAN G, WANG J C, et al., 2024. Prediction of bedding fractures in shale reservoirs based on two-step matching core-logging-seismic information[J]. Xinjiang Oil & Gas, 20(1): 21-30. (in Chinese with English abstract)
    [10]
    LI Q, HE J J, CHEN J, 2017. Simultaneous ultrasonic experiment of dynamic and static elastic parameters of coal under formation pressure conditions in Qinshui Basin[J]. Chinese Journal of Geophysics, 60(7): 2897-2903. (in Chinese with English abstract)
    [11]
    LI Y G, 2017. Classification of tight volcanic reservoirs and evaluation of favorable target potential in the Songnan Gas Field[J]. Journal of Jilin University (Earth Science Edition), 47(2): 344-354. (in Chinese with English abstract)
    [12]
    LIU J, HUANG C, ZHOU L, et al., 2024. Estimation of the rock mechanics and in-situ stress parameters of carbonate reservoirs using array sonic logging: a case study of Shunbei No. 4 block[J]. Journal of Geomechanics, 30(3): 394-407. (in Chinese with English abstract)
    [13]
    LIU R, HUANG H D, SUN C Z, et al., 2015. Study on the formation permeability evaluation of volcanic reservoir[J]. Science Technology and Engineering, 15(8): 60-65. (in Chinese with English abstract)
    [14]
    LIU T J, JIA H B, JI H C, et al., 2022. Volcanic reservoirs lacking a paleoweathering crust in Carboniferous deposits of the Junggar Basin, western China: characteristics, controlling factors and hydrocarbon potential[J]. Journal of Petroleum Science and Engineering, 219: 111119. doi: 10.1016/j.petrol.2022.111119
    [15]
    LIU S J, ZHANG Y J, WU Y, et al., 2025. Reverse Size Effect of the Unconfined Compressive Strength of Crystalline Rock: A Grain-Scale Perspective[J]. Rock Mechanics and Rock Engineering, 58(2): 1651-1669. doi: 10.1007/s00603-024-04216-7
    [16]
    LU B, ZHAO P, 2004. Distribution volcanic rocks and their effect on oil and gas reservoirs[J]. Special Oil & Gas Reservoirs, 11(2): 17-19. (in Chinese with English abstract)
    [17]
    LUO W, 2024. Regression analysis of dynamic and static elastic parameters of sandstone reservoir rocks in Bonan Subsag[J]. Sichuan Cement(7): 19-24. (in Chinese)
    [18]
    MA X P, ZHUANG X G, HE Y L, et al., 2025. Reservoir forming conditions and models of oil sands in northwestern margin of Junggar Basin, China[J]. Journal of Earth Science, 36(2): 611-626. doi: 10.1007/s12583-022-1751-9
    [19]
    MENG Z P, PENG S P, LING B C, 2000. Characters of the deformation and strength under different confining pressures on sedimentary rock[J]. Journal of China Coal Society, 25(1): 15-18. (in Chinese with English abstract)
    [20]
    PENG L, LUO J W, ZHAO H B, et al., 2023. The lost circulation mechanism in formations prone to lost circulation at Misui block in Changqing oilfield[J]. Xinjiang Oil & Gas, 19(4): 10-19. (in Chinese with English abstract)
    [21]
    SHENG Y S, ZHANG Y G, GU M Y, et al., 2016. Static and dynamic mechanical parameter calibration of tight reservoir rock mass under in-situ condition[J]. Oil & Gas Geology, 37(1): 109-116. (in Chinese with English abstract)
    [22]
    SONG J, 2014. The correlations between geological stress and casing damage and between rock mechanics parameters and casing damage in sandstone reservoir[J]. Journal of Geomechanics, 20(3): 324-330. (in Chinese with English abstract)
    [23]
    VALENCIA-GÓMEZ J C, CARDONA A, ZAPATA S, et al., 2024. Fracture analysis and low-temperature thermochronology of faulted Jurassic igneous rocks in the Southern Colombian Andes: reservoir and tectonic implications[J]. Marine and Petroleum Geology, 165: 106850. doi: 10.1016/j.marpetgeo.2024.106850
    [24]
    WANG J, LIU J, CHEN J, et al., 2023. Characteristics and controlling factors of carboniferous high quality volcanic reservoirs in eastern Junggar Basin[J]. Science Technology and Engineering, 23(22): 9388-9403. (in Chinese with English abstract)
    [25]
    WANG W G, WANG M, LU S F, et al., 2016. Basin modelling of gas migration and accumulation in volcanic reservoirs in the Xujiaweizi Fault-depression, Songliao Basin[J]. Arabian Journal of Geosciences, 9(2): 166. doi: 10.1007/s12517-015-2072-4
    [26]
    WU H H, 2023. Study of triaxial compression test on mechanical parameters of coal rock[J]. Academic Journal of Architecture and Geotechnical Engineering, 5(6): 16-20.
    [27]
    WU S J, WU J , FAN T L, et al. , 2025. Characteristics of correlation between lithofacies and mechanical properties of deep carbonate rocks and its genetic mechanism[J]. Petroleum Geology & Experiment, 47(6): 1224-1240. (in Chinese with English abstract)
    [28]
    XIE E, XIONG J, PAN Y Y, et al., 2014. The establishment of rock mechanical parameter model in Tazhong area of Tarim basin and its application[J]. Science Technology and Engineering, 14(3): 130-133. (in Chinese with English abstract)
    [29]
    YOU M Q, 2003. Effect of confining pressure on the Young’s Modulus of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 22(1): 53-60. (in Chinese with English abstract)
    [30]
    ZHANG J F, LIU Y H, WAN W S, et al., 2020. Lithology identification and reservoir prediction of volcanic reservoir in Xiquan area[J]. Xinjiang Oil & Gas, 16(3): 6-10. (in Chinese with English abstract)
    [31]
    ZHANG L, LI J, SONG Y, et al., 2021. Gas accumulation characteristics and exploration potential of the Carboniferous volcanic rocks in Junggar Basin[J]. China Petroleum Exploration, 26(6): 141-151. (in Chinese with English abstract)
    [32]
    ZHAO Y, PAN H, LUO F F, et al., 2023. Characteristics and quality determinants of Carboniferous volcanic reservoirs in the Hongche Fault Zone, Junggar Basin[J]. Oil & Gas Geology, 44(5): 1129-1140. (in Chinese with English abstract)
    [33]
    ZHI D M, XIE A, YANG F, et al., 2024. Exploration prospects of the whole oil and gas system in the Permian hydrocarbon depressions in the Eastern Junggar Basin[J]. Journal of Geomechanics, 30(5): 781-794. (in Chinese with English abstract)
    [34]
    ZHOU J, LIN C Y, LIU H M, et al., 2024. Mechanism of reservoir development in the Carboniferous-Permian volcanic rock reservoirs in Hala'alate Mountain area, Junggar Basin[J]. Earth Science Frontiers, 31(2): 327-342. (in Chinese with English abstract)
    [35]
    ZHOU Z J, ZHANG H W, WANG X Y, et al. , 2023. Calculation method of in-situ stress in tight sandstone reservoir without density logging curve[J]. China Science and Technology Information(2): 105-107. (in Chinese)
    [36]
    陈勉, 2004. 我国深层岩石力学研究及在石油工程中的应用[J]. 岩石力学与工程学报, 23(14): 2455-2462.
    [37]
    陈峥嵘, 刘伟, 时贤, 等, 2025. 考虑煤体结构差异的深层煤层气地应力场预测方法[J/OL]. 煤炭科学技术, 1-11. https: //link.cnki.net/urlid/11.2402.td.20250708.1135.006.
    [38]
    崔莹, 屈展, 张永浩, 等, 2018. 泥页岩动静态弹性力学参数实验研究[J]. 广西大学学报(自然科学版), 43(6): 2284-2291. doi: 10.13624/j.cnki.issn.1001-7445.2018.2284
    [39]
    高帅, 巩磊, 刘小波, 等, 2020. 松辽盆地北部深层致密火山岩气藏天然裂缝分布特征及控制因素[J]. 石油与天然气地质, 41(3): 503-512.
    [40]
    郭旭升, 2022. 我国陆上未来油气勘探领域探讨与攻关方向[J]. 地球科学, 47(10): 3511-3523.
    [41]
    李嘉成, 田刚, 王俊超, 等, 2024. 岩心-测井-地震信息二步匹配预测页岩储层层理缝[J]. 新疆石油天然气, 20(1): 21-30. doi: 10.12388/j.issn.1673-2677.2024.01.003
    [42]
    李琼, 何建军, 陈杰, 2017. 地层压力条件下沁水盆地煤岩动静态弹性参数同步超声实验研究[J]. 地球物理学报, 60(7): 2897-2903. doi: 10.6038/cjg20170733
    [43]
    李永刚, 2017. 松南气田火山岩致密储层分类及有利目标潜力评价[J]. 吉林大学学报(地球科学版), 47(2): 344-354. doi: 10.13278/j.cnki.jjuese.201702102
    [44]
    刘睿, 黄捍东, 孙传宗, 等, 2015. 火山岩油藏地层渗透率评价研究[J]. 科学技术与工程, 15(8): 60-65. doi: 10.3969/j.issn.1671-1815.2015.08.011
    [45]
    路波, 赵萍, 2004. 火山岩的分布及其对油气藏的作用[J]. 特种油气藏, 11(2): 17-19. doi: 10.3969/j.issn.1006-6535.2004.02.006
    [46]
    罗伟, 2024. 渤南洼陷砂岩储层岩石的动静态弹性参数回归分析[J]. 四川水泥(7): 19-24.
    [47]
    孟召平, 彭苏萍, 凌标灿, 2000. 不同侧压下沉积岩石变形与强度特征[J]. 煤炭学报, 25(1): 15-18. doi: 10.3321/j.issn:0253-9993.2000.01.004
    [48]
    彭磊, 罗江伟, 赵宏波, 等, 2023. 长庆油田米绥新区易漏地层漏失机理[J]. 新疆石油天然气, 19(4): 10-19. doi: 10.12388/j.issn.1673-2677.2023.04.002
    [49]
    盛英帅, 张玉广, 顾明勇, 等, 2016. 原位条件下致密储层岩体力学动静态参数校正[J]. 石油与天然气地质, 37(1): 109-116.
    [50]
    宋杰, 2014. 砂岩油藏地应力及岩石力学参数与套管损坏相关性[J]. 地质力学学报, 20(3): 324-330. doi: 10.3969/j.issn.1006-6616.2014.03.012
    [51]
    王剑, 刘金, 陈俊, 等, 2023. 准噶尔盆地东部石炭系优质火山岩储层特征及分布规律[J]. 科学技术与工程, 23(22): 9388-9403. doi: 10.3969/j.issn.1671-1815.2023.22.007
    [52]
    谢恩, 熊健, 潘杨勇, 等, 2014. 塔里木盆地塔中地区岩石力学参数模型建立及其应用[J]. 科学技术与工程, 14(3): 130-133.
    [53]
    伍尚嘉, 吴俊, 樊太亮, 等, 2025. 深层碳酸盐岩岩相与力学性质相关性特征及成因机制[J]. 石油实验地质, 47(6): 1224-1240. doi: 10.11781/sysydz2025061224
    [54]
    尤明庆, 2003. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报, 22(1): 53-60. doi: 10.3321/j.issn:1000-6915.2003.01.010
    [55]
    张金风, 刘艳红, 万文胜, 等, 2020. 西泉地区火山岩储集层岩性识别及储层预测[J]. 新疆石油天然气, 16(3): 6-10. doi: 10.3969/j.issn.1673-2677.2020.03.003
    [56]
    张璐, 李剑, 宋永, 等, 2021. 准噶尔盆地石炭系火山岩天然气成藏特征及勘探潜力[J]. 中国石油勘探, 26(6): 141-151. doi: 10.3969/j.issn.1672-7703.2021.06.010
    [57]
    赵耀, 潘虹, 骆飞飞, 等, 2023. 准噶尔盆地红车断裂带石炭系火山岩储层特征及质量控制因素[J]. 石油与天然气地质, 44(5): 1129-1140.
    [58]
    支东明, 谢安, 杨帆, 等, 2024. 准噶尔盆地东部二叠系富烃凹陷全油气系统勘探前景[J]. 地质力学学报, 30(5): 781-794. doi: 10.12090/j.issn.1006-6616.2024029
    [59]
    周健, 林承焰, 刘惠民, 等, 2024. 准噶尔盆地哈山地区石炭系-二叠系火山岩储层发育机制研究[J]. 地学前缘, 31(2): 327-342. doi: 10.13745/j.esf.sf.2023.9.39
    [60]
    周振江, 张翰文, 王星宇, 等, 2023. 缺乏密度测井曲线情况下致密砂岩储层地应力计算方法[J]. 中国科技信息(2): 105-107.
  • 加载中

Catalog

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (62) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return