Volume 31 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
YANG Y H,SUN D S,WU B C,et al.,2025. Determination of hydraulic fracture closure pressure based on total system stiffness method: Case studies[J]. Journal of Geomechanics,31(6):1168−1176 doi: 10.12090/j.issn.1006-6616.2025099
Citation: YANG Y H,SUN D S,WU B C,et al.,2025. Determination of hydraulic fracture closure pressure based on total system stiffness method: Case studies[J]. Journal of Geomechanics,31(6):1168−1176 doi: 10.12090/j.issn.1006-6616.2025099

Determination of hydraulic fracture closure pressure based on total system stiffness method: Case studies

doi: 10.12090/j.issn.1006-6616.2025099
Funds:  This research is financially supported by the Deep Earth Probe and Mineral Resources Exploration−National Science and Technology Major Project (Grant No. 2024ZD1000701), the General Program of the National Natural Science Foundation of China (Grant No. 42174122), the Fundamental Research Fund of the Institute of Geomechanics, Chinese Academy of Geological Sciences(Grant No. DZLXJK202407), and the Geological Survey Project of the China Geological Survey (Grant No. DD20230100401).
More Information
  • Received: 2025-07-31
  • Revised: 2025-09-18
  • Accepted: 2025-10-11
  • Available Online: 2025-12-09
  • Published: 2025-12-28
  •   Objective  Hydraulic fracturing is one of the most widely used and ISRM-recommended techniques for in-situ stress measurement in rock masses, where a key step is determining closure pressure from the pressure-decay curve as a proxy for the minimum horizontal principal stress. Conventional interpretation methods mainly rely on tangents or best-fit lines to analyze the pressure-decay rate, making the result highly sensitive to the selected time window and lacking clear physical representation of fracture closure, which introduces uncertainties in closure pressure and stress evaluation.   Methods  This study proposes a method based on the evolution of Total System Stiffness (TSS), in which the pressure-decay curve after shut-in is transformed into a TSS curve to better capture fracture-closure behavior, and the method is applied to hydraulic-fracturing datasets from different boreholes, lithologies and depths.   Results  The evolution of TSS after shut-in can be divided into three main stages whose features can be used to identify upper and lower bounds of closure pressure and to evaluate whether the pressure curve is suitable for in-situ stress interpretation; closure pressures obtained in this way show reduced sensitivity to the choice of time window compared with conventional approaches.   Conclusion  The TSS method provides clear physical meanings for the beginning and end of fracture closure and determines closure pressure directly from pressure data, without fitting or extrapolation. [ Significance ] The method offers a practical tool for improving closure-pressure interpretation and is expected to be widely applicable in hydraulic-fracturing-based in-situ stress analysis.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. Dordrecht: Springer.
    [2]
    BRUDY M, ZOBACK M D, FUCHS K, et al., 1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength[J]. Journal of Geophysical Research: Solid Earth, 102(B8): 18453-18475. doi: 10.1029/96JB02942
    [3]
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)
    [4]
    CHENG Z Y, LIU R, ZHANG J F, et al., 2023. Study on Seepage Mechanism Characteristics of A Single Fracture Based on Fracture Deformation Under Different Confining Pressures[J]. Geoscience, 37 (4): 972-976. DOI:10.19657/j.geoscience.1000-8527.2023.059. (in Chinese with English abstract)
    [5]
    DONG S W, LI T D, GAO R, et al., 2010. International progress in probing the earth's lithosphere and deep interior: a review[J]. Acta Geologica Sinica, 84(6): 743-770. (in Chinese with English abstract)
    [6]
    ECONOMIDES M J, NOLTE K G, 2000. Reservoir stimulation[M]. 3rd ed. New York: Wiley.
    [7]
    FAN T Y, LU C X, LU G X. Analysis of Crustal Stress in Tectonic Ore-forming Processes: Research Status and Thought[J]. Geoscience, 2024, 38 (04) : 865-872. DOI: 10.19657/j.geoscience.1000-8527.2024.086. (in Chinese with English abstract)
    [8]
    FENG C J, CHEN Q C, WU M L, et al., 2012. Analysis of hydraulic fracturing stress measurement data—discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract)
    [9]
    GUO F, MORGENSTERN N R, SCOTT J D, 1993. Interpretation of hydraulic fracturing pressure: a comparison of eight methods used to identify shut-in pressure[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(6): 627-631.
    [10]
    HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    [11]
    HU C Y, LI C, YANG Z B, et al., 2024. Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir-type gas storage[J]. Journal of Geomechanics, 30(3): 419-426. (in Chinese with English abstract)
    [12]
    ITO T, EVANS K, KAWAI K, et al., 1999. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 36(6): 811-826. doi: 10.1016/S0148-9062(99)00053-4
    [13]
    MCCLURE M W, JUNG H, CRAMER D D, et al., 2016. The fracture-compliance method for picking closure pressure from diagnostic fracture-injection tests[J]. SPE Journal, 21(4): 1321-1339. doi: 10.2118/179725-PA
    [14]
    QIN X H, CHEN Q C, TAN C X, et al., 2013. Analysis of current geostress state and seismic risk in southwest segment of Longmenshan fracture belt[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S1): 2870-2876. (in Chinese with English abstract)
    [15]
    RAAEN A M, SKOMEDAL E, KJØRHOLT H, et al., 2001. Stress determination from hydraulic fracturing tests: the system stiffness approach[J]. International Journal of Rock Mechanics and Mining Sciences, 38(4): 529-541. doi: 10.1016/S1365-1609(01)00020-X
    [16]
    RALEIGH C B, HEALY J H, BREDEHOEFT J D, 1976. An experiment in earthquake control at Rangely, Colorado[J]. Science, 191(4233): 1230-1237. doi: 10.1126/science.191.4233.1230
    [17]
    SCHMITT D R, HAIMSON B, 2017. Hydraulic fracturing stress measurements in deep holes[M]//FENG X T. Rock mechanics and engineering volume 1. London: CRC Press.
    [18]
    SUN D S, FENG C J, XU H B, et al., 2015. In-situ stress measurement at deep borehole of Dataigou Iron Mine area and its application[J]. Journal of Central South University (Science and Technology), 46(4): 1384-1392. (in Chinese with English abstract)
    [19]
    TRINH N Q, HAGEN S A, STRØMSVIK H, et al., 2023. Two new methods for defining shut-in pressure in hydraulic fracturing tests[J]. Rock Mechanics and Rock Engineering, 56(4): 3055-3076. doi: 10.1007/s00603-022-03212-z
    [20]
    VOGLER D, SETTGAST R R, ANNAVARAPU C, et al., 2018. Experiments and simulations of fully hydro-mechanically coupled response of rough fractures exposed to high-pressure fluid injection[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1186-1200. doi: 10.1002/2017JB015057
    [21]
    WANG C H, SONG C K, XING B R, 2012. Compliance of drilling-rod system for hydro-fracturing in situ stress measurement and its effect on measurements at great depth[J]. Geoscience, 26(4): 808-816. (in Chinese with English abstract)
    [22]
    WANG H Y, SHARMA M M, 2017. New variable compliance method for estimating in-situ stress and leak-off from DFIT data[C]//Proceedings of SPE Annual Technical Conference and Exhibition. San Antonio: OnePetro: SPE-187348-MS.
    [23]
    YANG Y H, GAO G L, WANG F, et al., 2022. Layered in-situ stress measurement method for perforated interval of Nanpu Gas Storage, Jidong Oilfield[J]. Oil & Gas Storage and Transportation, 41(9): 1029-1035. (in Chinese with English abstract)
    [24]
    YANG Y H, SUN D S, MA X D, et al., 2025. A total system stiffness approach for determining shut-in pressure in hydraulic fracturing stress measurements[J]. International Journal of Rock Mechanics and Mining Sciences, 192: 106160. doi: 10.1016/j.ijrmms.2025.106160
    [25]
    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
    [26]
    程智余, 刘瑞, 张金锋, 等, 2023. 围压变化作用下基于水力开度变化的单裂隙渗流特性研究[J]. 现代地质, 37(4): 972-976. DOI: 10.19657/j.geoscience.1000-8527.2023.059.
    [27]
    董树文, 李廷栋, 高锐, 等, 2010. 地球深部探测国际发展与我国现状综述[J]. 地质学报, 84(6): 743-770.
    [28]
    范桃园, 吕承训, 吕古贤. 2024. 构造成矿作用的地应力分析: 研究现状与思考[J].现代地质, 38 (4) : 865-872. DOI: 10.19657/j.geoscience.1000-8527.2024.086.
    [29]
    丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力ps的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159. doi: 10.16285/j.rsm.2012.07.017
    [30]
    胡彩云, 李聪, 杨智斌, 等, 2024. 气顶砂岩油藏型储气库运行上限压力和库容量定量评价研究[J]. 地质力学学报, 30(3): 419-426. doi: 10.12090/j.issn.1006-6616.2023075
    [31]
    秦向辉, 陈群策, 谭成轩, 等, 2013. 龙门山断裂带西南段现今地应力状态与地震危险性分析[J]. 岩石力学与工程学报, 32(S1): 2870-2876.
    [32]
    孙东生, 丰成君, 许洪斌, 等, 2015. 大台沟矿区深孔水压致裂原地应力测量及应用[J]. 中南大学学报(自然科学版), 46(4): 1384-1392.
    [33]
    王成虎, 宋成科, 邢博瑞, 2012. 水压致裂应力测量系统柔性分析及其对深孔测量的影响[J]. 现代地质, 26(4): 808-816. doi: 10.3969/j.issn.1000-8527.2012.04.024
    [34]
    杨跃辉, 高广亮, 王芳, 等, 2022. 冀东南堡储气库射孔段分层地应力测量方法[J]. 油气储运, 41(9): 1029-1035. doi: 10.6047/j.issn.1000-8241.2022.09.005
  • 加载中

Catalog

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (63) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return