Volume 31 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
ZHAO C L,ZHANG Y X,LI Z S,et al.,2025. Comparative study of excavation schemes for underground plant caverns based on in-situ stress field inversion[J]. Journal of Geomechanics,31(6):1255−1267 doi: 10.12090/j.issn.1006-6616.2025081
Citation: ZHAO C L,ZHANG Y X,LI Z S,et al.,2025. Comparative study of excavation schemes for underground plant caverns based on in-situ stress field inversion[J]. Journal of Geomechanics,31(6):1255−1267 doi: 10.12090/j.issn.1006-6616.2025081

Comparative study of excavation schemes for underground plant caverns based on in-situ stress field inversion

doi: 10.12090/j.issn.1006-6616.2025081
Funds:  This research is financially supported by the Natural Science Foundation of Hebei Province of China (Grant No. D2022203005).
More Information
  • Received: 2025-07-06
  • Revised: 2025-11-05
  • Accepted: 2025-11-17
  • Available Online: 2025-12-03
  • Published: 2025-12-28
  •   Objective  As the core hub of pumped storage power station projects, the stability of the surrounding rock of underground powerhouses directly affects engineering safety and lifecycle benefits. The control of its excavation poses a key challenge for the safe and efficient construction of such stations. To ensure safe excavation and rational support design, three excavation sequences were designed and comprehensively compared using the entropy-weighted Topsis method. The results provide a theoretical reference for the design and optimization of excavation schemes for underground powerhouses.   Methods  Based on geological survey data and underground powerhouse designdocumentation, a three-dimensional geological model was established. Initial in-situ stress equilibrium was achieved through inversion of the stress field. Three excavation sequences were simulated to observe the mechanical responses of the surrounding rock in terms of principal stress, displacement, and plastic zone distribution. Using raw indicator data obtained from the simulations, the entropy weight method was applied to assign weights to these three key indicators, enabling an objective evaluation of surrounding rock stability. The Topsis evaluation system was then used to calculate the relative closeness degree of each scheme, thereby identifying the optimal excavation sequence.   Results  A case study of the Daya River Pumped Storage Power Station showed that Scheme I outperformed the other two schemes in overall excavation effectiveness: (1) The surrounding rock experienced lower compressive stress with reduced susceptibility to tensile failure, and the stress distribution was more uniform; (2) displacement control was the most effective, with clear and consistent displacement trends; (3) the plastic zone developed within the smallest range, indicating a superior self-stabilizing capacity of the surrounding rock. The calculated relative closeness degrees were 0.82 for Scheme I, significantly higher than those for Scheme II (0.36) and Scheme III (0.41), confirming Scheme I as the optimal excavation scheme.   Conclusion  The entropy weights assigned to stress, displacement, and plastic zone distribution indicate that displacement, particularly in the horizontal direction, plays a dominant role during construction. Subsequent support design and excavation optimization should emphasize detailed planning to ensure surrounding rock stability. The comprehensive scoring of each scheme via the entropy-weighted Topsis method reduces empirical analogy errors caused by overreliance on any single indicator, providing a more intuitive and reliable comparison. The evaluation results align well with the mechanical response patterns observed during excavation simulation.   Significance  This study provides a basis for subsequent support design and construction excavation, while also offering valuable theoretical reference and a practical case for the design of excavation schemes under similar complex geological conditions.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    BAI J P, DONG Y A, GAN J, et al., 2023. In-situ stress state in critical areas of the Taiyuan pumped storage power station and its application in pivot project layout[J]. Journal of Geomechanics, 29(3): 375-387. (in Chinese with English abstract)
    [2]
    CHEN N, WANG C H, GAO G Y, et al., 2021. Characteristics of in-situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376-3384. (in Chinese with English abstract)
    [3]
    CHEN Q C, FAN T Y, LI X S, et al., 2014. In situ measurements and comprehensive research on the present crustal stress of northern South China Sea[J]. Chinese Journal of Geophysics, 57(8): 2518-2529. (in Chinese with English abstract)
    [4]
    CHEN W Z, LI S C, ZHU W S, et al., 2004. Excavation and optimization theory for giant underground caverns constructed in high dipping laminar strata[J]. Chinese Journal of Rock Mechanics and Engineering, 23(19): 3281-3287. (in Chinese with English abstract)
    [5]
    CHEN X F, CHEN W T, LUO J M, et al., 2018. Application of entropy weight Topsis method in the quality evaluation of underground cavern rock[J]. Industrial Safety and Environmental Protection, 44(3): 20-23. (in Chinese with English abstract)
    [6]
    CHENG Z Y, LIU R, ZHANG J F, et al, 2023. Study on Seepage Mechanism Characteristics of A Single Fracture Based on Fracture Deformation Under Different ConfiningPressures[J]. Geoscience, 37(4): 972-976. (in Chinese with English abstract)
    [7]
    DONG Y, ZHANG Y, XI C H, 2018. Study on rock burst prediction based on combination weighting—Topsis theory[J]. Pearl River, 39(9): 87-91. (in Chinese with English abstract)
    [8]
    DUAN S Q, FENG X T, JIANG Q, et al., 2017. Failure modes and mechanisms for rock masses with staggered zones of Baihetan underground caverns under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 36(4): 852-864. (in Chinese with English abstract)
    [9]
    GAO G Y, WANG C H, ZHOU H, et al., 2023. Analysis of in-situ stress characteristics in southern Sichuan basin based on multi-source data[J]. Chinese Journal of Underground Space and Engineering, 19(2): 550-559. (in Chinese with English abstract)
    [10]
    GUO H Z, MA Q C, XUE X C, et al., 1983. The analytical method of the initial stress field for rock masses[J]. Chinese Journal of Geotechnical Engineering, 5(3): 64-75. (in Chinese with English abstract)
    [11]
    HONG W B, ZHOU L Y, WANG G Y, 2024. Influence analysis on Liaoning Dayahe pumped storage power station on Dayahe reservoir[J]. Water Resources & Hydropower of Northeast China, 42(10): 46-49. (in Chinese with English abstract)
    [12]
    LI C R , TANG M G , ZHOU J, et al , 2025. Distribution and impoundment response law of landslides in the reservoir area of Wudongde Hydropower Station [J]. Water Resources and Hydropower Engineering, 56(4): 35-51. DOI: 10.13928/j.cnki.wrahe.2025.04.004. (in Chinese with English abstract)
    [13]
    LI R J, JIANG H, SU G S, et al., 2025. Optimization of excavation and support schemes for underground caverns of pumped-storage power station[J]. Water Power, 51(4): 54-61. (in Chinese)
    [14]
    LI T, FENG X T, WANG R, et al., 2019. Characteristics of rockburst location deflection and its microseismic activities in a deep tunnel[J]. Rock and Soil Mechanics, 40(7): 2847-2854. (in Chinese with English abstract)
    [15]
    LI Z J, ZHOU J, PENG F X, 2025. Comprehensive evaluation of integrated development of pumped storage power stations and photovoltaic systems based on entropy weight Topsis method[J]. Water Resources and Power, 43(3): 205-209, 195. (in Chinese with English abstract)
    [16]
    LI Z Z, YANG W C, ZHANG P, et al., 2023. In-situ stress measurement and inversion analysis of a large hydropower project in southeast Tibet[J]. Journal of Geomechanics, 29(3): 442-452. (in Chinese with English abstract)
    [17]
    LIU J, XIA Y, JIANG Q, et al., 2025. Surrounding rock deformation and failure characteristics of Yingliangbao hydropower station in highly tectonic region and response analysis to Luding earthquake in underground caverns[J]. Rock and Soil Mechanics, 46(7): 2265-2280. (in Chinese with English abstract)
    [18]
    SHA P, GUO Q L, WANG C H, 2014. Application of hydraulic fracturing method in the construction of deep buried tunnels in western China[C]//Proceedings of the 2014 national conference on engineering geology. Taiyuan: Engineering Geology Committee of the Geological Society of China: 119-125. (in Chinese)
    [19]
    SONE H, ZOBACK M D, 2014. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 124: 416-431. doi: 10.1016/j.petrol.2014.09.022
    [20]
    SU D D, FAN Y, WU J G, et al., 2024. Research progress on failure mechanism of surrounding rock in deep cavern blasting excavation crossing fault fracture zone[J]. Journal of China Three Gorges University (Natural Sciences), 46(4): 25-34. (in Chinese with English abstract)
    [21]
    SU G S, FENG X T, JIANG Q, et al., 2007. Intelligent method of combinatorial optimization of excavation sequence and support parameters for large underground caverns under condition of high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 26(S1): 2800-2808. (in Chinese with English abstract)
    [22]
    TAN Z, LI B, LI P, et al., 2024. Study on the formation mechanism of excavation damage zone of surrounding rock of the underground powerhouse under high geostress[J]. Chinese Journal of Underground Space and Engineering, 20(6): 1979-1990. (in Chinese with English abstract)
    [23]
    WANG C H, GUO Q L, DING L F, et al., 2009. High in-situ stress criteria for engineering area and a case analysis[J]. Rock and Soil Mechanics, 30(8): 2359-2364. (in Chinese with English abstract)
    [24]
    WANG C H, GAO G Y, WANG H, et al., 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2): 167-174. (in Chinese with English abstract)
    [25]
    XIE H P, 2019. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 44(5): 1283-1305. (in Chinese with English abstract)
    [26]
    YANG Q, PAN Y W, CHENG L, et al., 2015. Mechanism of valley deformation of high arch dam and effective stress principle for unsaturated fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 34(11): 2258-2269. (in Chinese with English abstract)
    [27]
    ZHANG X F, WANG J M, ZHANG P, et al. , 2025. Analysis on the three-dimensional in-situ stress state and underground cavern stability of a pumped storage hydropower project area in Xinjiang Uygur autonomous region[J/OL]. Journal of Geomechanics. [2025-11-30]. https://link.cnki.net/urlid/11.3672.P.20250910.1652.002. (in Chinese with English abstract)
    [28]
    ZHOU Z J, CHEN H J, LUO T, et al., 2024. A simple inversion method for initial ground stress of underground powerhouses based on FLAC3D[J]. Engineering Journal of Wuhan University, 57(S2): 11-15. (in Chinese with English abstract)
    [29]
    白金朋, 董延安, 甘俊, 等, 2023. 太原抽水蓄能电站关键部位地应力状态及其在枢纽工程布设中的应用[J]. 地质力学学报, 29(3): 375-387. doi: 10.12090/j.issn.1006-6616.20232907
    [30]
    陈念, 王成虎, 高桂云, 等, 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376-3384. doi: 10.16285/j.rsm.2021.0380
    [31]
    陈群策, 范桃园, 李绪深, 等, 2014. 中国南海海域北部地区现今地应力实测及综合分析研究[J]. 地球物理学报, 57(8): 2518-2529.
    [32]
    陈卫忠, 李术才, 朱维申, 等, 2004. 急倾斜层状岩体中巨型地下洞室群开挖施工理论与优化研究[J]. 岩石力学与工程学报, 23(19): 3281-3287. doi: 10.3321/j.issn:1000-6915.2004.19.012
    [33]
    陈雪锋, 陈文涛, 罗建梅, 等, 2018. 熵权Topsis模型在地下工程岩体质量评价中的应用[J]. 工业安全与环保, 44(3): 20-23. doi: 10.3969/j.issn.1001-425X.2018.03.006
    [34]
    程智余, 刘瑞, 张金锋, 等, 2023. 围压变化作用下基于水力开度变化的单裂隙渗流特性研究[J]. 现代地质, 37(4): 972-976.
    [35]
    董源, 张引, 习朝辉, 2018. 基于组合赋权-Topsis理论的岩爆预测研究[J]. 人民珠江, 39(9): 87-91.
    [36]
    段淑倩, 冯夏庭, 江权, 等, 2017. 高地应力下白鹤滩地下洞室群含错动带岩体破坏模式及机制研究[J]. 岩石力学与工程学报, 36(4): 852-864. doi: 10.13722/j.cnki.jrme.2015.1236
    [37]
    高桂云, 王成虎, 周昊, 等, 2023. 基于多源应力数据的川南地区地应力特征分析[J]. 地下空间与工程学报, 19(2): 550-559.
    [38]
    郭怀志, 马启超, 薛玺成, 等, 1983. 岩体初始应力场的分析方法[J]. 岩土工程学报, 5(3): 64-75.
    [39]
    洪文彬, 周立洋, 王冠宇, 2024. 辽宁大雅河抽水蓄能电站对大雅河水库影响分析[J]. 东北水利水电, 42(10): 46-49.
    [40]
    李超瑞, 汤明高, 周剑, 等2025. 乌东德水电站库区滑坡发育分布及蓄水响应规律[J]. 水利水电技术(中英文) , 56(4): 35-51. DOI: 10.13928/j.cnki.wrahe.2025.04.004
    [41]
    李仁杰, 江浩, 苏国韶, 等, 2025. 抽水蓄能电站地下洞室群开挖支护方案优化研究[J]. 水力发电, 51(4): 54-61.
    [42]
    李桐, 冯夏庭, 王睿, 等, 2019. 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 40(7): 2847-2854. doi: 10.16285/j.rsm.2018.0470
    [43]
    李征征, 杨文超, 张鹏, 等, 2023. 藏东南某大型水电站工程区地应力状态及反演分析[J]. 地质力学学报, 29(3): 442-452. doi: 10.12090/j.issn.1006-6616.20232912
    [44]
    李梓嘉, 周佳, 彭方旭, 2025. 基于熵权Topsis法的抽水蓄能电站与光伏配套开发综合评价[J]. 水电能源科学, 43(3): 205-209, 195. doi: 10.20040/j.cnki.1000-7709.2025.20240761
    [45]
    刘健, 夏勇, 江权, 等, 2025. 强烈构造区硬梁包水电站地下洞室群围岩变形破坏特征与泸定地震响应分析[J]. 岩土力学, 46(7): 2265-2280. doi: 10.16285/j.rsm.2024.1557
    [46]
    沙鹏, 郭啟良, 王成虎, 2014. 水压致裂法在西部深埋隧道工程建设中的应用[C]//2014年全国工程地质学术大会论文集. 太原: 中国地质学会工程地质专委会: 119-125.
    [47]
    苏都都, 范勇, 吴进高, 等, 2024. 穿越断层破碎带深埋洞室爆破开挖围岩破坏机理研究进展[J]. 三峡大学学报(自然科学版), 46(4): 25-34. doi: 10.13393/j.cnki.issn.1672-948X.2024.04.004
    [48]
    苏国韶, 冯夏庭, 江权, 等, 2007. 高地应力下大型地下洞室群开挖顺序与支护参数组合优化的智能方法[J]. 岩石力学与工程学报, 26(S1): 2800-2808. doi: 10.3321/j.issn:1000-6915.2007.z1.032
    [49]
    谭洲, 李彪, 李鹏, 等, 2024. 高地应力地下厂房围岩开挖损伤区形成机理研究[J]. 地下空间与工程学报, 20(6): 1979-1990. doi: 10.20174/j.JUSE.2024.06.24
    [50]
    王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(02): 167-174. doi: 10.12090/j.issn.1006-6616.2020.26.02.016
    [51]
    王成虎, 郭啟良, 丁立丰, 等, 2009. 工程区高地应力判据研究及实例分析[J]. 岩土力学, 30(8): 2359-2364. doi: 10.3969/j.issn.1000-7598.2009.08.029
    [52]
    谢和平, 2019. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 44(5): 1283-1305.
    [53]
    杨强, 潘元炜, 程立, 等, 2015. 高拱坝谷幅变形机制及非饱和裂隙岩体有效应力原理研究[J]. 岩石力学与工程学报, 34(11): 2258-2269. doi: 10.13722/j.cnki.jrme.2015.0972
    [54]
    张晓飞, 王继明, 张鹏, 等, 2025. 新疆某抽蓄电站深部岩体地应力赋存规律及地下硐室稳定性分析[J/OL]. 地质力学学报. [2025-09-09]. DOI: 10.12090/j.issn.1006-6616.2025076
    [55]
    周佐健, 陈焕杰, 罗滔, 等, 2024. 地下厂房初始地应力简易FLAC3D反演方法[J]. 武汉大学学报(工学版), 57(S2): 11-15.
  • 加载中

Catalog

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (87) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return