Volume 31 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
GONG L W,ZHANG H,CHEN L J,et al.,2025. Analysis of historical seismic parameters based on geological hazards from the Xiaonanhai earthquake[J]. Journal of Geomechanics,31(3):345−360 doi: 10.12090/j.issn.1006-6616.2025001
Citation: GONG L W,ZHANG H,CHEN L J,et al.,2025. Analysis of historical seismic parameters based on geological hazards from the Xiaonanhai earthquake[J]. Journal of Geomechanics,31(3):345−360 doi: 10.12090/j.issn.1006-6616.2025001

Analysis of historical seismic parameters based on geological hazards from the Xiaonanhai earthquake

doi: 10.12090/j.issn.1006-6616.2025001
Funds:  This research is financially supported by the Joint Funds of the National Science Foundation of China (Grant No. U2239205) and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202404711).
More Information
  • Received: 2025-01-08
  • Revised: 2025-03-24
  • Accepted: 2025-03-25
  • Available Online: 2025-04-28
  • Published: 2025-06-28
  •   Objective  As the largest historical seismic event in the Chongqing region, the Xiaonanhai Earthquake holds significant scientific value for deciphering seismogenic parameters to inform regional seismic hazard assessment and anti-seismic fortification standards. This study addresses the critical challenge of scarce observational data in historical earthquake research.   Methods  A novel methodology for inverting seismic parameters through characteristic earthquake relics has been developed, systematically reconstructing the historical seismic parameters of the Xiaonanhai Earthquake. The interpretation of high-precision remote sensing and field investigations of seismically induced geo-hazards reveal a dominant near-N–S spatial distribution of the landslide clusters triggered by the Xiaonanhai Earthquake, consistent with the elliptical major axis direction of historically documented felt areas.   Results  This spatial congruence suggests that the NNW-striking Yangtoushan Fault is the seismogenic fault. Detailed remote sensing analyses of landslide orientations, sliding directions, and deposit distributions demonstrate, for the first time, coherent SE-directed motion features across multiple landslide masses, indicating a southeastward coseismic rupture propagation. A comparative analysis of the spatial correlation between geo-hazards and seismogenic structures observed in the Ludian Earthquake, coupled with seismotectonic mechanisms in southeastern Chongqing, further validates the rationality of the derived seismic parameters.   Conclusion  This study innovatively identifies a "karst–tectonic" composite mechanism: Under persistent NW–SE tectonic stress, bead-like karst caves developed along the fault zone or dominant joint directions form natural weakening zones, inducing stress concentration and ultimately triggering left-lateral strike-slip motion with thrust components. This dual mechanism explains the unique seismic characteristics blending tectonic rupture and karst collapse. [Significance] The proposed "geo-morphodynamic inversion" methodology advances the reconstruction of historical earthquake parameters and provides critical insights for the evaluation of seismic risk in karst terrains.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    CUI Y L, PAN J W, HU J H, et al., 2021. Landslides triggered by the 1970 Tonghai MS7.7 earthquake and their distribution characteristics[J]. IOP Conference Series: Earth and Environmental Science, 861(5): 052011. doi: 10.1088/1755-1315/861/5/052011
    [2]
    DING R J, LI K C, 2004. Chongqing earthquake research[M]. Beijing: Seismological Press. (in Chinese)
    [3]
    GAO Y P, LIU J, HAN L F, et al., 2023. Discussion on the magnitude or intensity limitation of paleoearthquake events[J]. Journal of Geomechanics, 29(5): 704-719. (in Chinese with English abstract
    [4]
    GONG L W, DENG Z H, CHEN L J, et al., 2019. Analyses of finite element model based on station’s tectonic environment: taking Qianjiang station for example[J]. Acta Seismologica Sinica, 41(1): 80-91. (in Chinese with English abstract
    [5]
    GONG L W, CHEN L J, GUO W Y, et al. , 2021. Mechanism of borehole strain precursor anomaly at Fengjie station: results from stress transfer in regional stress field[J]. China Earthquake Engineering Journal, 43(5): 1087-1094, 1102. (in Chinese with English abstract
    [6]
    HE H X, LI S J, LIU M, et al., 2016. Research on landslide spatial distribution in Ludian earthquake disaster area[J]. Journal of Catastrophology, 31(1): 92-95. (in Chinese with English abstract
    [7]
    HE X L, XU C, 2022. Spatial distribution and tectonic significance of the landslides triggered by the 2021 Ms6.4 Yangbi earthquake, Yunnan, China[J]. Frontiers in Earth Science, 10: 1030417. doi: 10.3389/feart.2022.1030417
    [8]
    HE X L, XU C, QI W W, et al., 2024. Contrasting landslides distribution patterns and seismic rupture processes of 2014 Jinggu and Ludian earthquakes, China[J]. Scientific Reports, 14(1): 28470. doi: 10.1038/s41598-024-79682-8
    [9]
    HUANG Q S, 2014. Research on formation mechanism and dynamic characteristics of Xiao Nanhai landslides induced by earthquake[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract
    [10]
    HUANG Y D, XU C, HE X L, et al., 2025. Landslides induced by the 2023 Jishishan Ms6.2 earthquake (NW China): spatial distribution characteristics and implication for the seismogenic fault[J]. npj Natural Hazards, 2: 14. doi: 10.1038/s44304-025-00064-9
    [11]
    LI C P, TANG M Y, GUO W Y, et al., 2019. Relocation of the 23 November 2017 Wulong MS5.0 earthquake sequence and analysis of its seismogenic fault[J]. Seismology and Geology, 41(3): 603-618. (in Chinese with English abstract
    [12]
    LI L J, 1997. Neotectonism in the juncture of Sichuan, Guizhou and Hunan[J]. Acta Geologica Sichuan, 17(2): 110-114. (in Chinese with English abstract
    [13]
    LI Y L, YU H Y, WANG M, et al., 2025. The physics-based deterministic scenarios for earthquake hazards and losses of the Zhujiangkou fault in Southern China[J]. Acta Geologica Sichuan Hazards, 2: 6.
    [14]
    LIU J L, XU C, ZHAO B B, et al., 2025. Deformation slope extraction and influencing factor analysis using LT-1 satellite data: a case study of Chongqing and surrounding areas, China[J]. Remote Sensing, 17(1): 156. doi: 10.3390/rs17010156
    [15]
    LIU S W, DING Z X, ZHANG J S, 1981. Investigation of the 1856 Dalu Dam earthquake in Xianfeng County, Hubei Province[J]. Crustal Deformation and Earthquake(2): 69-81. (in Chinese with English abstract
    [16]
    LIU Y L, 2009. Study on Quaternary tectonic movements and seismogeology in Qianjiang area of Chongqing municipality[D]. Guangzhou: Sun Yat-sen University. (in Chinese with English abstract
    [17]
    LU Y K, ZHANG J G, SONG L J, et al., 2014. Analysis on intensity distribution and seismic disaster characteristics of building of Yunnan Ludian MS6.5 earthquake in 2014[J]. Journal of Seismological Research, 37(4): 549-557. (in Chinese with English abstract
    [18]
    MA S Y, SHAO X Y, XU C, et al., 2025. Topographic location and connectivity to channel of earthquake-and rainfall-induced landslides in Loess Plateau area[J]. Scientific Reports, 15(1): 628. doi: 10.1038/s41598-024-84885-0
    [19]
    QIN J, WANG Z J, WANG H C, et al., 2018. Discussion on the epicentral intensity and magnitude of the 1856 Qianjiang-Xianfeng earthquake[J]. Earthquake Research in China, 34(3): 551-564. (in Chinese with English abstract
    [20]
    QIU Z D, GUO C B, WU R A, et al., 2024a. Development Characteristics and Stability Evaluation of the Shadingmai Large-scale Ancient Landslide in the Upper Reaches of Jinsha River, Tibetan Plateau[J]. Geoscience, 38(02): 451-463.
    [21]
    QIU Z D, GUO C B, YANG Z H, et al., 2024b. Spatial structure characteristics and formation mechanism of the ancient Deda landslide elucidated using the microtremor survey method in Sichuan Province, China[J]. Journal of Geomechanics, 30(6): 906-920. (in Chinese with English abstract
    [22]
    SHEN T, WANG Y S, WU L K, 2014. Discrete element simulation analysis of formation mechanism of Xiaonanhai landslide in Chongqing city[J]. Rock and Soil Mechanics, 35(S2): 667-675. (in Chinese with English abstract
    [23]
    SUN D, QIN L, MENG M H, et al., 2024. Analysis of the development characteristics of co-seismic geological hazards and their controlling factors in the Maerkang MS6.0 earthquake swarm, Sichuan, on June 10, 2022[J]. Journal of Geomechanics, 30(3): 443-461. (in Chinese with English abstract
    [24]
    WANG J P, LI Y S, ZHANG C, 2016. Dynamics mechanism of low-intensity earthquake triggered the collapse of the soft rock: Xiao Nanhai seismic landslide in Chongqing of China as an example[J]. Mountain Research, 34(2): 200-207. (in Chinese with English abstract
    [25]
    WANG M, SHEN Z K, 2020. Present‐day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774
    [26]
    WANG Z J, QIN J, WANG H C, et al. , 2018. Understanding the activity of the Qianjiang fault zone from the historical earthquakes in Qianjiang[J]. Earthquake Research in Sichuan(2): 5-12. (in Chinese with English abstract
    [27]
    WANG Z J, QIN J, LI C P, et al., 2019. Discussion on the causes of the 1856 Xiaonanhai, Chongqing earthquake disaster[J]. China Earthquake Engineering Journal, 41(3): 813-822. (in Chinese with English abstract
    [28]
    WEI Q H, 1975. Regional geological survey report of the Qianjiang sheet (1: 200, 000) (Report No. 107)[M]. Chengdu: Sichuan Bureau of Geology. (in Chinese)
    [29]
    XU C, XU X W, SHEN L L, et al., 2014. Inventory of landslides triggered by the 2014 MS6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology, 36(4): 1186-1203. (in Chinese with English abstract
    [30]
    XU C, 2015. Utilizing coseismic landslides to analyze the source and rupturing process of the 2014 Ludian earthquake[J]. Journal of Engineering Geology, 23(4): 755-759. (in Chinese with English abstract
    [31]
    YIN G Y, ZHANG H, GONG L W, et al., 2024. Seismic and geological evidence of hidden faults in the Yinpan reservoir area based on a dense seismic array[J]. Science China Earth Sciences, 67(7): 2401-2407. doi: 10.1007/s11430-023-1361-4
    [32]
    YIN Z Q, XU Y Q, CHEN H Q, et al., 2016. The development and distribution characteristics of geohazards induced by august 3, 2014 Ludian earthquake and comparison with Jinggu and Yingjiang earthquakes[J]. Acta Geologica Sinica, 90(6): 1086-1097. (in Chinese with English abstract
    [33]
    ZHANG S S, HU X L, ZHANG G C, et al., 2024. Formation and catastrophic evolution of giant landslides in the alpine canyon area of Western China[J]. Journal of Geomechanics, 30(5): 795-810. (in Chinese with English abstract
    [34]
    ZHANG Y Q, LI X, XIE Y Q, et al., 2016. Analysis on seismotectonic background and earthquake hazard characteristic in Zhaotong, Yunnan: taking Ludian MS6.5 earthquake and Yiliang MS5.7、5.6 earthquake as examples[J]. Journal of Seismological Research, 39(2): 270-278. (in Chinese with English abstract
    [35]
    ZENG, MA Z G, ZHAO C, et al., 2023. Multi-Source Remote Sensing Recognition of Reactivation Characteristics of An Ancient Landslide Group at Taipingqiao in the Dadu River Catchment, Eastern Tibetan Plateau[J]. Geoscience, 37(04): 994-1003.
    [36]
    ZHOU Q, WU G, 2015. Seismic landslides and seismogenic structure of the 2014 Ludian MS6.5 earthquake[J]. Seismology and Geology, 37(1): 269-278. (in Chinese with English abstract
    [37]
    ZHOU X, ZHOU Q, GAO S P, 2018. Investigation to landslides triggered by the 1856 Qianjiang-Xianfeng (Daluba) earthquake and their generation mechanisms[J]. Seismology and Geology, 40(2): 410-425. (in Chinese with English abstract
    [38]
    ZHOU X, ZHOU Q, GAO S P, et al., 2020. Restoration of the original topography of the Xiaonanhai landslide in Chongqing and calculation of its volume[J]. Seismology and Geology, 42(4): 936-954. (in Chinese with English abstract
    [39]
    丁仁杰,李克昌,2004. 重庆地震研究[M]. 北京:地震出版社.
    [40]
    高云鹏,刘静,韩龙飞,等,2023. 古地震事件震级或强度大小限定的讨论[J]. 地质力学学报,29(5):704-719. doi: 10.12090/j.issn.1006-6616.2023034
    [41]
    龚丽文,邓志辉,陈丽娟,等,2019. 基于台址构造环境的有限元建模分析:以黔江台为例[J]. 地震学报,41(1):80-91. doi: 10.11939/jass.20170133
    [42]
    龚丽文,陈丽娟,郭卫英,等,2021. 奉节钻孔应变前兆异常机理分析:区域应力场应力传递的结果[J]. 地震工程学报,43(5):1087-1094,1102. doi: 10.3969/j.issn.1000-0844.2021.05.1087
    [43]
    和海霞,李素菊,刘明,等,2016. 云南鲁甸6.5级地震灾区滑坡分布特征研判分析[J]. 灾害学,31(1):92-95. doi: 10.3969/j.issn.1000-811X.2016.01.019
    [44]
    黄青松,2014. 小南海地震滑坡的成因机制及动力学特性研究[D]. 成都:成都理工大学.
    [45]
    李翠平,唐茂云,郭卫英,等,2019. 2017年11月23日重庆武隆MS5.0地震序列重定位及发震断层分析[J]. 地震地质,41(3):603-618. doi: 10.3969/j.issn.0253-4967.2019.03.005
    [46]
    李伦炯,1997. 川黔湘毗邻区的新构造运动[J]. 四川地质学报,17(2):110-114.
    [47]
    刘锁旺,丁忠孝,张俊山,1981. 1856年湖北咸丰县大路坝地震考察[J]. 地壳形变与地震(2):69-81.
    [48]
    刘玉亮,2009. 重庆黔江地区第四纪构造活动与地震地质研究[D]. 广州:中山大学.
    [49]
    卢永坤,张建国,宋立军,等,2014. 2014年云南鲁甸6.5级地震烈度分布与房屋震害特征[J]. 地震研究,37(4):549-557.
    [50]
    秦娟,王赞军,王宏超,等,2018. 关于1856年黔江-咸丰地震震中烈度与震级的探讨[J]. 中国地震,34(3):551-564.
    [51]
    邱振东,郭长宝,吴瑞安,等. 金沙江上游沙丁麦大型古滑坡发育特征与稳定性评价[J]. 现代地质,2024a,38(02):451-463.
    [52]
    邱振东,郭长宝,杨志华,等,2024b. 基于微动探测的四川德达古滑坡空间结构特征与形成机理研究[J]. 地质力学学报,30(6):906-920.
    [53]
    申通,王运生,吴龙科,2014. 重庆小南海滑坡形成机制离散元模拟分析[J]. 岩土力学,35(S2):667-675.
    [54]
    孙东,覃亮,蒙明辉,等,2024. 2022年6月10日四川马尔康MS6.0震群同震地质灾害发育特征及其控制因素分析[J]. 地质力学学报,30(3):443-461.
    [55]
    王金鹏,李渝生,张超,2016. 软岩区低强度地震诱发大规模滑坡的机理:以重庆小南海地震滑坡为例[J]. 山地学报,34(2):200-207.
    [56]
    王赞军,秦娟,王宏超,等,2018. 从黔江历史地震认识黔江断裂带活动性[J]. 四川地震(2):5-12.
    [57]
    王赞军,秦娟,李翠平,等,2019. 1856年重庆小南海地震地质灾害成因探讨[J]. 地震工程学报,41(3):813-822. doi: 10.3969/j.issn.1000-0844.2019.03.813
    [58]
    韦清海,1975. 黔江幅1:20万区域地质调查报告[R]. 成都:四川省地质局.
    [59]
    许冲,徐锡伟,沈玲玲,等,2014. 2014年鲁甸MS6.5地震触发滑坡编录及其对一些地震参数的指示[J]. 地震地质,36(4):1186-1203. doi: 10.3969/j.issn.0253-4967.2014.04.020
    [60]
    许冲,2015. 利用同震滑坡分析2014年鲁甸地震震源性质与破裂过程[J]. 工程地质学报,23(4):755-759.
    [61]
    殷志强,徐永强,陈红旗,等,2016. 2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究[J]. 地质学报,90(6):1086-1097. doi: 10.3969/j.issn.0001-5717.2016.06.003
    [62]
    张世殊,胡新丽,章广成,等,2024. 西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展[J]. 地质力学学报,30(5):795-810. doi: 10.12090/j.issn.1006-6616.2024031
    [63]
    张彦琪,李西,谢英情,等,2016. 以鲁甸地震和彝良地震为例分析云南昭通地质构造与地震灾害特点[J]. 地震研究,39(2):270-278.
    [64]
    曾帅,马志刚,赵聪,等,2023. 青藏高原东部大渡河流域太平桥乡古滑坡群复活特征多源遥感识别[J]. 现代地质,37(04):994-1003.
    [65]
    周庆,吴果,2015. 鲁甸6.5级地震崩滑地质灾害分布与成因探讨[J]. 地震地质,37(1):269-278. doi: 10.3969/j.issn.0253-4967.2015.01.021
    [66]
    周鑫,周庆,高帅坡,2018. 1856年黔江咸丰地震(大路坝地震)崩滑体调查及其形成机制[J]. 地震地质,40(2):410-425. doi: 10.3969/j.issn.0253-4967.2018.02.009
    [67]
    周鑫,周庆,高帅坡,等,2020. 重庆小南海滑坡原始地形恢复及滑坡体体积计算[J]. 地震地质,42(4):936-954. doi: 10.3969/j.issn.0253-4967.2020.04.011
  • 加载中

Catalog

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (817) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return