| Citation: | TRIMONOVA M,STEFANOV Y,DUBINYA N,et al.,2025. A comprehensive study of the mechanical properties of rock-like materials for inelastic deformation model establishment[J]. Journal of Geomechanics,31(3):475−490 doi: 10.12090/j.issn.1006-6616.2024094 |
|
AMOUR F, HAJIABADI M R, NICK H M, 2023. Impact of uncertainties associated with the choice of the yield stress on the prediction of subsurface reservoir compaction: a field study[J]. International Journal of Rock Mechanics and Mining Sciences, 161: 105280. doi: 10.1016/j.ijrmms.2022.105280
|
|
BÉSUELLE P, DESRUES J, RAYNAUD S, 2000. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences, 37(8): 1223-1237. doi: 10.1016/S1365-1609(00)00057-5
|
|
BIENIAWSKI Z T, 1967. Mechanism of brittle fracture of rock: part I—theory of the fracture process[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4(4): 395-406.
|
|
CASSIANI G, BROVELLI A, HUECKEL T, 2017. A strain-rate-dependent modified Cam-Clay model for the simulation of soil/rock compaction[J]. Geomechanics for Energy and the Environment, 11: 42-51. doi: 10.1016/j.gete.2017.07.001
|
|
CHEN Z L, SHI H Z, XIONG C, et al., 2023. Effects of mineralogical composition on uniaxial compressive strengths of sedimentary rocks[J]. Petroleum Science, 20(5): 3062-3073. doi: 10.1016/j.petsci.2023.03.028
|
|
DE PATER C J, CLEARY M P, QUINN T S, et al., 1994. Experimental verification of dimensional analysis for hydraulic fracturing[J]. SPE Production & Facilities, 9(4): 230-238.
|
|
DRUCKER D C, PRAGER W, 1952. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 10(2): 157-165. doi: 10.1090/qam/48291
|
|
ESCRIBANO D E, NASH D F T, DIAMBRA A, 2019. Local and global volumetric strain comparison in sand specimens subjected to drained cyclic and monotonic triaxial compression loading[J]. Geotechnical Testing Journal, 42(4): 1006-1030. doi: 10.1520/GTJ20170054
|
|
FU J W, LABUZ J F, GUO M D, et al., 2022. Experimental and numerical investigations on hydraulic fracture growth using rock-like resin material containing an injecting inner pre-crack[J]. Journal of Petroleum Science and Engineering, 213: 110424. doi: 10.1016/j.petrol.2022.110424
|
|
GARAGASH D I, 2019. Cohesive-zone effects in hydraulic fracture propagation[J]. Journal of the Mechanics and Physics of Solids, 133: 103727. doi: 10.1016/j.jmps.2019.103727
|
|
GARAGASH I A, DUBINYA N V, RUSINA O A, et al., 2018. Estimation of rock strength properties from triaxial test data[J]. Geophysical Research, 19(3): 57-72.
|
|
GARAVAND A, STEFANOV Y P, REBETSKY Y L, et al., 2020. Numerical modeling of plastic deformation and failure around a wellbore in compaction and dilation modes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 44(6): 823-850. doi: 10.1002/nag.3041
|
|
GRUESCHOW E, RUDNICKI J W, 2005. Elliptic yield cap constitutive modeling for high porosity sandstone[J]. International Journal of Solids and Structures, 42(16-17): 4574-4587. doi: 10.1016/j.ijsolstr.2005.02.001
|
|
HAJIABADI M R, NICK H M, 2020. A modified strain rate dependent constitutive model for chalk and porous rock[J]. International Journal of Rock Mechanics and Mining Sciences, 134: 104406. doi: 10.1016/j.ijrmms.2020.104406
|
|
HE W H, CHEN K Y, HAYATDAVOUDI A, et al., 2019. Effects of clay content, cement and mineral composition characteristics on sandstone rock strength and deformability behaviors[J]. Journal of Petroleum Science and Engineering, 176: 962-969. doi: 10.1016/j.petrol.2019.02.016
|
|
JIAO Y, ZUO Y J, WEN Z J, et al., 2024. Crack-tip propagation laws and energy evolution of fractured sandstone[J]. Engineering Failure Analysis, 166: 108832. doi: 10.1016/j.engfailanal.2024.108832
|
|
JIN Y J, MENG L D, LYU D Y, et al., 2023. Risk assessment of fault reactivation considering the heterogeneity of friction strength in the BZ34-2 oilfield, Huanghekou Sag, Bohai Bay basin, China[J]. Petroleum Science, 20(5): 2695-2708. doi: 10.1016/j.petsci.2023.06.007
|
|
LIU S L, LI P F, HU K, et al., 2023. Constitutive modeling of brittle–ductile transition in porous rocks: formulation, identification and simulation[J]. Acta Mechanica, 234(5): 2103-2121. doi: 10.1007/s00707-023-03489-3
|
|
LYAKHOVSKY V, PANTELEEV I, SHALEV E, et al., 2022. A new anisotropic poroelasticity model to describe damage accumulation during cyclic triaxial loading of rock[J]. Geophysical Journal International, 230(1): 179-201. doi: 10.1093/gji/ggac062
|
|
MA S, LI G M, ZHANG Y J, et al., 2024. Propagation behavior of coal crack induced by liquid CO2 phase change blasting considering blasting pressure effects[J]. PLoS One, 19(1): e0313360.
|
|
MAHETAJI M, BRAHMA J, 2024. A critical review of rock failure criteria: a scope of machine learning approach[J]. Engineering Failure Analysis, 159: 107998 doi: 10.1016/j.engfailanal.2024.107998
|
|
NIKOLAEVSKII V N, 1971. Governing equations of plastic deformation of a granular medium: PMM vol. 35, n $\mathop = \limits^ \circ $6, 1971, pp. 1070–1082[J]. Journal of Applied Mathematics and Mechanics, 35(6): 1017-1029. doi: 10.1016/0021-8928(71)90106-7
|
|
NOVIKOVA E V, TRIMONOVA M A, DUBINYA N V, et al., 2023. Estimation of breakdown pressure in laboratory experiments on hydraulic fracturing[J]. Materials Physics and Mechanics, 51(5): 52-65.
|
|
OMAR T, SADREKARIMI A, 2015. Effect of triaxial specimen size on engineering design and analysis[J]. International Journal of Geo-Engineering, 6(1): 5. doi: 10.1186/s40703-015-0006-3
|
|
OMLIN S, RÄSS L, PODLADCHIKOV Y Y, 2018. Simulation of three-dimensional viscoelastic deformation coupled to porous fluid flow[J]. Tectonophysics, 746: 695-701. doi: 10.1016/j.tecto.2017.08.012
|
|
RONG G, LIU G, HOU D, et al., 2013. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model[J]. The Scientific World Journal, 2013: 589215. doi: 10.1155/2013/589215
|
|
SATHAR S, REEVES H J, CUSS R J, et al., 2012. The role of stress history on the flow of fluids through fractures[J]. Mineralogical Magazine, 76(8): 3165-3177. doi: 10.1180/minmag.2012.076.8.30
|
|
SCHWAB D R, BIDGOLI T S, TAYLOR M H, 2017. Characterizing the potential for injection-induced fault reactivation through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, Kansas[J]. Journal of Geophysical Research: Solid Earth, 122(12): 10132-10154.
|
|
STEFANOV Y P, CHERTOV M A, AIDAGULOV G R, et al., 2011. Dynamics of inelastic deformation of porous rocks and formation of localized compaction zones studied by numerical modeling[J]. Journal of the Mechanics and Physics of Solids, 59(11): 2323-2340. doi: 10.1016/j.jmps.2011.08.002
|
|
STEFANOV Y P, BAKEEV R A, 2015. Formation of flower structures in a geological layer at a strike-slip displacement in the basement[J]. Izvestiya, Physics of the Solid Earth, 51(4): 535-547. doi: 10.1134/S1069351315040114
|
|
STEFANOV Y P, 2018. Some nonlinear rock behavior effects[J]. Physical Mesomechanics, 21(3): 234-241. doi: 10.1134/S1029959918030074
|
|
STEFANOV Y P, ZHARASBAEVA D K, 2022. Loading diagrams and parameters of the model of elastic-pseudoplastic deformation of black shale rocks of the Bazhenov formation[J]. Russian Journal of Geophysical Technologies(3): 13-24. (in Russian
|
|
STEFANOV Y P, 2023. Constitutive model of rock, nonlinearity and localization[J]. Reviews on Advanced Materials and Technologies, 5(3): 30-38. doi: 10.17586/2687-0568-2023-5-3-30-38
|
|
SUN C, BORGOMANO J V M, FORTIN J, et al., 2020. Effect of pore collapse and grain crushing on the frequency dependence of elastic wave velocities in a porous sandstone[J]. Rock Mechanics and Rock Engineering, 53(11): 5081-5093. doi: 10.1007/s00603-020-02213-0
|
|
SUN W J, WANG L B, WANG Y Q, 2017. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review[J]. Frontiers of Structural and Civil Engineering, 11(3): 322-328. doi: 10.1007/s11709-017-0387-9
|
|
TAN X, KONIETZKY H, FRÜHWIRT T, 2015. Numerical simulation of triaxial compression test for brittle rock sample using a modified constitutive law considering degradation and dilation behavior[J]. Journal of Central South University, 22(8): 3097-3107. doi: 10.1007/s11771-015-2846-6
|
|
TANG Y L, LI J C, WANG D P, et al., 2024. An energy-driven crushing-plasticity coupling model for grain crushing in porous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 183: 105931. doi: 10.1016/j.ijrmms.2024.105931
|
|
TRIMONOVA M, BARYSHNIKOV N, ZENCHENKO E, et al. , 2017. The study of the unstable fracure propagation in the injection well: numerical and laboratory modeling[C]//Proceedings of SPE Russian Petroleum Technology Conference. Moscow: SPE: 187822-MS.
|
|
VAN DAM D B, PAPANASTASIOU P, DE PATER C J, 2002. Impact of rock plasticity on hydraulic fracture propagation and closure[J]. SPE Production & Facilities, 17(3): 149-159.
|
|
VERMEER P A, DE BORST R, 1984. Non-associated plasticity for soils, concrete and rock[J]. Heron, 29(3): 1-64.
|
|
VESELOVSKIY R V, DUBINYA N V, PONOMAREV A V, et al., 2022. Shared research facilities "petrophysics, geomechanics and paleomagnetism" of the Schmidt institute of physics of the earth RAS[J]. Geodynamics & Tectonophysics, 13(2): 0579.
|
|
WANG D P, LI J C, ZOU C J, et al., 2024. The influence of morphology and the loading-unloading process on discontinuity stress states observed via photoelastic technique and its inspiration to induced seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 182: 105893. doi: 10.1016/j.ijrmms.2024.105893
|
|
WANG J, XIE H P, MATTHAI S K, et al., 2023. The role of natural fracture activation in hydraulic fracturing for deep unconventional geo-energy reservoir stimulation[J]. Petroleum Science, 20(4): 2141-2164. doi: 10.1016/j.petsci.2023.01.007
|
|
WENG X W, KRESSE O, CHUPRAKOV D, et al., 2014. Applying complex fracture model and integrated workflow in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 124: 468-483. doi: 10.1016/j.petrol.2014.09.021
|
|
WILKINS M L, 1999. Computer simulation of dynamic phenomena[M]. Berlin: Springer: 1-260.
|
|
WILLIAMS B, HEARD W, GRAHAM S, et al., 2020. Effect of specimen geometry on triaxial compressive response of high-strength concrete[J]. Construction and Building Materials, 244: 118348. doi: 10.1016/j.conbuildmat.2020.118348
|
|
WONG T F, BAUD P, 2012. The brittle-ductile transition in porous rock: a review[J]. Journal of Structural Geology, 44: 25-53. doi: 10.1016/j.jsg.2012.07.010
|
|
YANG P J, MIAO S J, CAI M F, et al., 2024. Real-time porosity inversion of rock based on the ultrasonic velocity and its compression-damage coupled model under triaxial compression[J]. Scientific Reports, 14(1): 29252 doi: 10.1038/s41598-024-78430-2
|
|
YANG S Q, JING H W, WANG S Y, 2012. Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression[J]. Rock Mechanics and Rock Engineering, 45(4): 583-606. doi: 10.1007/s00603-011-0208-8
|
|
YARUSHINA V M, PODLADCHIKOV Y Y, WANG L H, 2020. Model for (de)compaction and porosity waves in porous rocks under shear stresses[J]. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019683. doi: 10.1029/2020JB019683
|
|
YIMSIRI S, SOGA K, 2002. A review of local strain measurement systems for triaxial testing of soils[J]. Journal of the Southeast Asian Geotechnical Society, 33(1): 41-52.
|
|
ZHANG B C, LIANG Y N, ZOU Q L, et al., 2024. Damage and hardening evolution characteristics of sandstone under multilevel creep–fatigue loading[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1): 43. doi: 10.1007/s40948-024-00751-3
|