| Citation: | CHEN Z B,YUN L,WANG J,et al.,2025. Fault damage zone and its unmanned aerial vehicle identification technology[J]. Journal of Geomechanics,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089 |
| [1] |
AI M, BI H Y, ZHENG W J, et al., 2018. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics[J]. Seismology and Geology, 40(6): 1276-1293. (in Chinese with English abstract
|
| [2] |
AYDIN A, 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 17(7): 797-814. doi: 10.1016/S0264-8172(00)00020-9
|
| [3] |
BERG S S, SKAR T, 2005. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah[J]. Journal of Structural Geology, 27(10): 1803-1822. doi: 10.1016/j.jsg.2005.04.012
|
| [4] |
BI H Y, SHI L, ZHANG D L, et al., 2022. Constraining paleoseismicity of the Wulashan piedmont fault on the northern margin of the ordos block from fault scarp morphology[J]. Frontiers in Earth Science, 10: 911173. doi: 10.3389/feart.2022.911173
|
| [5] |
BROGI A, 2011. Bowl-shaped basin related to low-angle detachment during continental extension: the case of the controversial Neogene Siena Basin (central Italy, northern Apennines)[J]. Tectonophysics, 499(1-4): 54-76. doi: 10.1016/j.tecto.2010.12.005
|
| [6] |
CHEN G H, XU X W, WEN X Z, et al., 2006. Application of digital aerophotogrammetry in active tectonics[J]. Earth Science: Journal of China University of Geosciences, 31(3): 405-410. (in Chinese with English abstract
|
| [7] |
CHEN S P, TIAN Z J, XU S D, et al., 2024. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 43(1): 13-19. (in Chinese with English abstract
|
| [8] |
CHINNERY M A, 1966. Secondary faulting: I. Theoretical aspects[J]. Canadian Journal of Earth Sciences, 3(2): 163-174. doi: 10.1139/e66-013
|
| [9] |
CHOI J H, JIN K, ENKHBAYAR D, et al., 2012. Rupture propagation inferred from damage patterns, slip distribution, and segmentation of the 1957 MW8.1 Gobi‐Altay earthquake rupture along the Bogd fault, Mongolia[J]. Journal of Geophysical Research: Solid Earth, 117(B12): B12401.
|
| [10] |
CHOI J H, EDWARDS P, KO K, et al., 2016. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006
|
| [11] |
CUNNINGHAM D, GREBBY S, TANSEY K, et al., 2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20): L20308.
|
| [12] |
DARYONO M R, NATAWIDJAJA D H, PUJI A R, et al. , 2021. Fault rupture in Baribis Fault possibly related to the 1847 major earthquake event in the Cirebon area[C]//Proceedings of the 3rd Southeast Asian conference on geophysics. Bandung, Indonesia: IOP Publishing: 012052.
|
| [13] |
DELL’ACQUA F, GAMBA P, 2012. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives[J]. Proceedings of the IEEE, 100(10): 2876-2890. doi: 10.1109/JPROC.2012.2196404
|
| [14] |
ENGELDER T, 1989. Analysis of pinnate joints in the Mount Desert Island granite: Implications for postintrusion kinematics in the coastal volcanic belt, Maine[J]. Geology, 17(6): 564-567. doi: 10.1130/0091-7613(1989)017<0564:AOPJIT>2.3.CO;2
|
| [15] |
FERNÁNDEZ-LOZANO J, GONZÁLEZ-DÍEZ A, GUTIÉRREZ-ALONSO G, et al., 2018. New perspectives for UAV-based modelling the Roman gold mining infrastructure in NW Spain[J]. Minerals, 8(11): 518. doi: 10.3390/min8110518
|
| [16] |
FRANKEL K L, DOLAN J F, 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02025.
|
| [17] |
FU B, LI Z Q, CHEN J, et al., 2018. The application of miniature unmanned aerial vehicle in 25 November 2016 Arketao MW6.6 earthquake[J]. Seismology and Geology, 40(3): 672-684. (in Chinese with English abstract
|
| [18] |
GAO S P, 2017. A quantitative parameters extraction study of active tectonics based on UAV photogrammetry technology[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract
|
| [19] |
GAO S P, RAN Y K, WU F Y, et al., 2017. Using UAV photogrammetry technology to extract information of tectonic activity of complex alluvial fan: a case study of an alluvial fan in the southern margin of Barkol basin[J]. Seismology and Geology, 39(4): 793-804. (in Chinese with English abstract
|
| [20] |
HAN L F, LIU J, YAO W Q, et al., 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 Madoi MW7.4 earthquake and discussion on distributed rupture in the step-over[J]. Seismology and Geology, 44(2): 484-505. (in Chinese with English abstract
|
| [21] |
HAO R, WANG J P, CHEN D Y, et al., 2024. Routing optimization of ultra violet light communication unmanned aerial vehicle formation based on JAYA algorithm[J]. Journal of Electronics & Information Technology, 46(3): 848-857. (in Chinese with English abstract
|
| [22] |
HOU E K, SHOU Z G, XU Y N, et al., 2017. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence[J]. Coal Geology & Exploration, 45(6): 102-110. (in Chinese with English abstract
|
| [23] |
HU C Y, ZHANG G C, LI X L, 2019. Application of UAV remote sensing in high altitude collapsed geological hazards investigation[J]. Yangtze River, 50(1): 136-140. (in Chinese with English abstract
|
| [24] |
HUANG H Z, CHEN J P, ZHENG Y W, 2017. Interpretation of mine geological hazards based on UAV remote sensing technology[J]. Journal of Geology, 41(3): 499-503. (in Chinese with English abstract
|
| [25] |
JAMES M R, ROBSON S, 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks[J]. Earth Surface Processes and Landforms, 39(10): 1413-1420. doi: 10.1002/esp.3609
|
| [26] |
JIANG C Y, PAN J W, ZHANG L J, et al., 2024. Application of UAV SfM technology in active tectonic research: a case study of the Longmu Co Fault, Northwestern Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 30(2): 332-347. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2023192
|
| [27] |
JIN B H, LIAO Z Q, LIU A X, 2024. Research overview of unmanned aerial vehicle logistics and its visual analysis based on CiteSpace[J]. Journal of Chengdu Technological University, 27(1): 69-74, 81. (in Chinese with English abstract
|
| [28] |
JING H D, LI Y H, ZHANG Z H, et al., 2015. Extraction of joint information of rock masses based on 3D laser scanning technology[J]. Journal of Northeastern University (Natural Science), 36(2): 280-283. (in Chinese with English abstract
|
| [29] |
JOHNSON K, NISSEN E, SARIPALLI S, et al., 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986. doi: 10.1130/GES01017.1
|
| [30] |
KATZ Y, WEINBERGER R, AYDIN A, 2004. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah[J]. Journal of Structural Geology, 26(3): 491-501. doi: 10.1016/j.jsg.2003.08.003
|
| [31] |
KIM Y S, ANDREWS J R, SANDERSON D J, 2000. Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England[J]. Geosciences Journal, 4(2): 53-72. doi: 10.1007/BF02910127
|
| [32] |
KIM Y S, ANDREWS J R, SANDERSON D J, 2001. Reactivated strike–slip faults: examples from north Cornwall, UK[J]. Tectonophysics, 340(3-4): 173-194. doi: 10.1016/S0040-1951(01)00146-9
|
| [33] |
KIM Y S, PEACOCK D C P, SANDERSON D J, 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta[J]. Journal of Structural Geology, 25(5): 793-812 doi: 10.1016/S0191-8141(02)00200-6
|
| [34] |
KIM Y S, PEACOCK D C P, SANDERSON D J, 2004. Fault damage zones[J]. Journal of structural geology, 26(3): 503-517. doi: 10.1016/j.jsg.2003.08.002
|
| [35] |
KOVANIČ Ľ, TOPITZER B, PEŤOVSKÝ P, et al., 2023. Review of photogrammetric and lidar applications of UAV[J]. Applied Sciences, 13(11): 6732. doi: 10.3390/app13116732
|
| [36] |
KUANG J, ZHANG Y S, 2017. Automatic detection of rock mass discontinuity trace based on digital image processing[J]. Geotechnical Engineering Technique, 31(1): 5-8, 13. (in Chinese with English abstract
|
| [37] |
KUANG J, 2018. Research on automatic detection of structural surface traces and rock mass quality evaluation method based on image processing[D]. Nanjing: Nanjing University of Science & Technology. (in Chinese with English abstract
|
| [38] |
KUANG J, ZHANG Y S, ZHAO J B, 2018. Automatic detection of rock mass fissure based on image processing of phase congruency[J]. Computer Engineering and Applications, 54(24): 193-197. (in Chinese with English abstract
|
| [39] |
LEI G W, YANG C H, WANG G B, et al., 2016. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241. (in Chinese with English abstract
|
| [40] |
LI D C, REN J J, ZHANG Z W, et al., 2022. Research on semi-automatic extraction method of seismic surface ruptures based on high-resolution UAV image: taking the 2021 MS7.4 Maduo earthquake in Qinghai Province as an example[J]. Seismology and Geology, 44(6): 1484-1502. (in Chinese with English abstract
|
| [41] |
LI G, 2021. Status and trend of UAV development[J]. Modern Industrial Economy and Informationization, 11(3): 12-13, 16. (in Chinese with English abstract
|
| [42] |
LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English abstract
|
| [43] |
LI J X, LI Y F, LI S, et al., 2017. Application of remote sensing technology of UAV in the acquisition of earthquake disaster in Pishan, Xinjiang[J]. Technology for Earthquake Disaster Prevention, 12(3): 690-699. (in Chinese with English abstract
|
| [44] |
LI K, TAPPONNIER P, XU X W, et al., 2023. The 2022, MS6.9 Menyuan earthquake: surface rupture, Paleozoic suture re-activation, slip-rate and seismic gap along the Haiyuan fault system, NE Tibet[J]. Earth and Planetary Science Letters, 622: 118412. doi: 10.1016/j.jpgl.2023.118412
|
| [45] |
LI L W, YU Z Y, CHEN B X, et al., 2022. Co-seismic surface deformation characteristics and seismic geological enlightenment of the Luding, Sichuan MS6.8 earthquake in 2022[J]. Journal of Institute of Disaster Prevention, 24(4): 75-87. (in Chinese with English abstract
|
| [46] |
LI S J, XIE Y L, ZHU X M, 2013. Research on countermeasure of water gushing with collapse in process of Wushaoling highway tunnel crossing F4 fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3602-3609. (in Chinese with English abstract
|
| [47] |
LI X Z, ZHANG G Y, LUO G Y, 2003. Barrier effects caused by fault on excavating-induced stress & edformation and mechanism of resulting groundwater inrush[J]. Rock and Soil Mechanics, 24(2): 220-224. (in Chinese with English abstract
|
| [48] |
LI Y G, ELLSWORTH W L, THURBER C H, et al., 1997. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California[J]. Bulletin of the Seismological Society of America, 87(1): 210-221. doi: 10.1785/BSSA0870010210
|
| [49] |
LI Y P, XU J D, YU H M, 2006. Geometrical characteristics of fractures and rock quality assessment in granite in the Beishan area, Gansu province[J]. Seismology and Geology, 28(1): 129-138. (in Chinese with English abstract
|
| [50] |
LI Z, FU B H, 2022. Quantitative analyses of geomorphologic features in response to Late Quaternary tectonic activities along the Maqin-Maqu segment, East Kunlun fault zone[J]. Seismology and Geology, 44(6): 1421-1447. (in Chinese with English abstract
|
| [51] |
LIU D M, LI D W, YANG W R, et al., 2005. Evidence from fission track ages for the tectonic uplift of the Himalayan Orogen during Late Cenozoic[J]. Earth Science: Journal of China University of Geosciences, 30(2): 147-152. (in Chinese with English abstract
|
| [52] |
LIU F C, 2021. The characteristics of quaternary activities of SN normal fault and strike sip fault, central Tibet: taking Riganpei Co fault and norma co graben as examples[D]. Beijing: China University of Geosciences (Beijing). doi: 10.27493/d.cnki.gzdzy.2021.001592. (in Chinese with English abstract
|
| [53] |
LIU J, CHEN T, ZHANG Z P, et al., 2013. Illuminating the active Haiyuan fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45. (in Chinese with English abstract doi: 10.1360/972012-1526
|
| [54] |
LIU J, 2018. Application of remote sensing surveying and mapping technology of UAV in engineering surveying and mapping[J]. World Nonferrous Metals(24): 156-157. (in Chinese with English abstract
|
| [55] |
LIU S, HE B, WANG T, et al., 2024. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China[J]. Journal of Geomechanics, 30(2): 314-331. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2024009
|
| [56] |
LIU S H, WANG Y S, 2023. Application of drone technology in agricultural machinery automation[J]. South Agricultural Machinery, 54(11): 167-169. (in Chinese)
|
| [57] |
LIU X L, XIA T, LIU J, et al., 2022. Distributed characteristics of the surface deformations associated with the 2021 MW7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 461-483. (in Chinese with English abstract
|
| [58] |
LIU Y M, WU Z P, YAN S Y, et al. , 2021. New insight into the origin of horsetail-like structure in Beibu depression, Beibu Gulf Basin[J]. Journal of China University of Mining & Technology, 2021, 50(1): 163-175, doi: 10.13247/j.cnki.jcumt.001247. (in Chinese with English abstract
|
| [59] |
MA J B, ZHANG B, WANG Y, et al., 2019. A study on the scarp of reverse fault based on geomorphological observation by low-altitude remote sensing: taking the fault scarp of Zhangliugou Beach as an example[J]. Earth Science Frontiers, 26(2): 92-103. doi: 10.13745/j.esf.sf.2019.2.6
|
| [60] |
MA J F, LI X Q, ZHANG C C, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone[J]. Journal of Geomechanics, 28(6): 956-968. (in Chinese with English abstract
|
| [61] |
MAKHUBELA T V, KRAMERS J D, 2022. Testing a new combined (U, Th)–He and U/Th dating approach on Plio-Pleistocene calcite speleothems[J]. Quaternary Geochronology, 67: 101234. doi: 10.1016/j.quageo.2021.101234
|
| [62] |
MAO Y Z, ZHANG X D, LV G J, et al., 2023. Identification of faults in the southern margin of Xuanhua Basin by low altitude aerial survey[J]. Plateau Earthquake Research, 35(2): 56-62. (in Chinese with English abstract
|
| [63] |
MARQUES A, RACOLTE G, DE SOUZA E M, et al. , 2021. Deep learning application for fracture segmentation over outcrop images from UAV-based digital photogrammetry[C]//Proceedings of 2021 IEEE international geoscience and remote sensing symposium IGARSS. Brussels, Belgium: IEEE: 4692-4695.
|
| [64] |
MARTEL S J, BOGER W A, 1998. Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock[J]. Journal of Geophysical Research: Solid Earth, 103(B9): 21299-21314. doi: 10.1029/98JB01393
|
| [65] |
MCGRATH A G, DAVISON I, 1995. Damage zone geometry around fault tips[J]. Journal of Structural Geology, 17(7): 1011-1024. doi: 10.1016/0191-8141(94)00116-H
|
| [66] |
NAYLOR M A, MANDL G, SUPESTEIJN C H K, 1986. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 8(7): 737-752. doi: 10.1016/0191-8141(86)90022-2
|
| [67] |
OUÉDRAOGO M M, DEGRÉ A, DEBOUCHE C, et al., 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds[J]. Geomorphology, 214: 339-355. doi: 10.1016/j.geomorph.2014.02.016
|
| [68] |
PAJARES G, 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)[J]. Photogrammetric Engineering & Remote Sensing, 81(4): 281-330.
|
| [69] |
PETIT J P, BARQUINS M, 1988. Can natural faults propagate under mode II conditions?[J]. Tectonics, 7(6): 1243-1256. doi: 10.1029/TC007i006p01243
|
| [70] |
RAJLICH P, 1993. Riedel shear: a mechanism for crenulation cleavage[J]. Earth-Science Reviews, 34(3): 167-195. doi: 10.1016/0012-8252(93)90033-4
|
| [71] |
RIEDEL W, 1929. Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie[J]. Geologie und Palä ontologie, 8: 354-368.
|
| [72] |
SHAO Y X, ZHANG B, ZOU X B, et al., 2017. Application of Uavls to Rapid Geological Surveys[J]. Seismology and Geology, 39(6): 1185-1197. (in Chinese with English abstract
|
| [73] |
SHAO Y X, LIU J, GAO Y P, et al., 2022. Coseismic displacement measurement and distributed deformation characterization: a case of 2021 Mw7.4 Madoi earthquake[J]. Seismology and Geology, 44(2): 506-523. (in Chinese with English abstract
|
| [74] |
SKEMPTON A W, 1966. Some observations on tectonic shear zones[C]//Paper presented at the 1st ISRM congress. Lisbon, Portugal: ISRM.
|
| [75] |
TAMAS A, HOLDSWORTH R E, TAMAS D M, et al., 2023. Using UAV-based photogrammetry coupled with in situ fieldwork and U-Pb geochronology to decipher multi-phase deformation processes: A case study from sarclet, inner moray firth Basin, UK[J]. Remote Sensing, 15(3): 695. doi: 10.3390/rs15030695
|
| [76] |
THACKRAY G D, RODGERS D W, STREUTKER D, 2013. Holocene scarp on the Sawtooth fault, central Idaho, USA, documented through Lidar topographic analysis[J]. Geology, 41(6): 639-642. doi: 10.1130/G34095.1
|
| [77] |
TOMAŠTÍK J, MOKROŠ M, SUROVÝ P, et al., 2019. UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas?[J]. Remote Sensing, 11(6): 721. doi: 10.3390/rs11060721
|
| [78] |
VERMILYE J M, SCHOLZ C H, 1999. Fault propagation and segmentation: insight from the microstructural examination of a small fault[J]. Journal of Structural Geology, 21(11): 1623-1636. doi: 10.1016/S0191-8141(99)00093-0
|
| [79] |
WAGNER G A, VAN DEN HAUTE, 1992. Fission-track dating method[M]//WAGNER G A, VAN DEN HAUTE. Fission-track dating. Dordrecht: Springer: 59-94.
|
| [80] |
WALSH J, WATTERSON J, YIELDING G, 1991. The importance of small-scale faulting in regional extension[J]. Nature, 351(6325): 391-393. doi: 10.1038/351391a0
|
| [81] |
WANG D Q, 2013. A study on faults detection using electrical resistivity tomography method[D]. Nanjing: Nanjing University. (in Chinese with English abstract
|
| [82] |
WANG F Y, CHEN J P, FU X H, et al., 2008. Study on geometrical information of obtaining rock mass discontinuities based on VirtuoZo[J]. Chinese Journal of Rock Mechanics and Engineering, 27(1): 169-175. (in Chinese with English abstract
|
| [83] |
WANG W X, SHAO Y X, YAO W Q, et al., 2022. Rapid extraction of features and indoor reconstruction of 3D structures of Madoi MW7.4 earthquake surface ruptures based on photogrammetry method[J]. Seismology and Geology, 44(2): 524-540. (in Chinese with English abstract
|
| [84] |
WANG X L, CROSTA G B, CLAGUE J J, et al., 2021. Fault controls on spatial variation of fracture density and rock mass strength within the Yarlung Tsangpo Fault damage zone (southeastern Tibet)[J]. Engineering Geology, 291: 106238. doi: 10.1016/j.enggeo.2021.106238
|
| [85] |
WEI Z Y, RAMON A, HE H L, et al., 2015. Accuracy analysis of terrain point cloud acquired by “structure from motion" using aerial photos[J]. Seismology and Geology, 37(2): 636-648. (in Chinese with English abstract
|
| [86] |
WEISMÜLLER C, URAI J L, KETTERMANN M, et al., 2019. Structure of massively dilatant faults in Iceland: lessons learned from high-resolution unmanned aerial vehicle data[J]. Solid Earth, 10(5): 1757-1784. doi: 10.5194/se-10-1757-2019
|
| [87] |
WESTOBY M J, BRASINGTON J, GLASSER N F, et al., 2012. ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 179: 300-314. doi: 10.1016/j.geomorph.2012.08.021
|
| [88] |
WU X J, 2023. Research on the application of small UAV aerial survey in farmland information monitoring[J]. Automation Application, 64(3): 1-3. (in Chinese with English abstract
|
| [89] |
XIONG B S, LI X, 2020. Offset measurement along active fault based on portable unmanned aerial vehicle and structure from motion: a case study of the middle section in Altyn-Tagh fault[J]. Science Technology and Engineering, 20(26): 10848-10855. (in Chinese with English abstract
|
| [90] |
XU S S, PENG H, NIETO-SAMANIEGO A F, et al., 2017. The similarity between Riedel shear patterns and strike-slip basin patterns[J]. Geological Review, 63(2): 287-301. (in Chinese with English abstract
|
| [91] |
XU W T, LI X Z, ZHANG Y S, et al., 2022. Fine identification and characterization of rock mass discontinuities and its application using a digital photogrammetry system[J]. Acta Geodaetica et Cartographica Sinica, 51(10): 2093-2106. (in Chinese with English abstract
|
| [92] |
YAMAZAKI F, KUBO K, TANABE R, et al. , 2017. Damage assessment and 3d modeling by UAV flights after the 2016 Kumamoto, Japan earthquake[C]//Proceedings of 2017 IEEE international geoscience and remote sensing symposium (IGARSS). Fort Worth, TX, USA: IEEE: 3182-3185.
|
| [93] |
YANG C H, BAO H T, WANG G B, et al., 2006. Estimation of mean trace length and trace midpoint density of rock mass joints[J]. Chinese Journal of Rock Mechanics and Engineering, 25(12): 2475-2480. (in Chinese with English abstract
|
| [94] |
YANG C H, MEI T, WANG G B, et al. , 2007. Study on Rockmass joint characteristics of Jiji quarry in Beishan, Gansu province[J]. Chinese Journal of Rock Mechanics and Engineering(S2): 3849-3854. (in Chinese with English abstract
|
| [95] |
YANG H J, HU C L, CHEN W W, et al., 2004. Information construction of the tunnel in a fault and crush zone[J]. Chinese Journal of Rock Mechanics and Engineering, 23(22): 3917-3922. (in Chinese with English abstract
|
| [96] |
YANG Y Z, REN J J, LI D C, 2023. Quantitative staging of alluvial fan geomorp hic surfaces in arid areas based on SAR imagery: A case study of the Shule River alluvial fan in the western desert region of the Hexi Corridor[J]. Journal of Geomechanics, 29(6): 842-855. (in Chinese with English abstract
|
| [97] |
YOUNGS R R, ARABASZ W J, ANDERSON R E, et al., 2003. A Methodology for Probabilistic Fault Displacement Hazard Analysis (PFDHA)[J]. Earthquake Spectra, Vol, 19(1): 191-219 doi: 10.1193/1.1542891
|
| [98] |
YUAN D Y, CHAMPAGNAC J D, GE W P, et al., 2011. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau[J]. GSA Bulletin, 123(9-10): 2016-2030. doi: 10.1130/B30315.1
|
| [99] |
YUAN D Y, XIE H, SU R H, et al., 2023. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics, 66(1): 229-244. (in Chinese with English abstract doi: 10.6038/cjg2022Q0093
|
| [100] |
YUAN M F, XIE Z L, 2018. A research on application of UAV remote sensing mapping technology in mine survey[J]. China’s Manganese Industry, 36(5): 11-13, 20. (in Chinese with English abstract
|
| [101] |
ZANUTTA A, LAMBERTINI A, VITTUARI L, 2020. UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes[J]. Journal of Marine Science and Engineering, 8(1): 52. doi: 10.3390/jmse8010052
|
| [102] |
ZENG Y, ZHOU R, TANG J, et al., 2024. Design of an emergency communications UAV system compatible for all Chinese telecom operators and its ground coverage strategy[J]. Telecommunication Engineering, 64(7): 995-1004. (in Chinese with English abstract doi: 10.20079/j.issn.1001-893x.230912003
|
| [103] |
ZEYBEK M, 2021. Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods[J]. Measurement Science and Technology, 32(6): 065402. doi: 10.1088/1361-6501/abf25d
|
| [104] |
ZHANG K Q, WU Z H, LÜT Y, et al., 2015. Review and progress of OSL dating[J]. Geological Bulletin of China, 34(1): 183-203. (in Chinese with English abstract
|
| [105] |
ZHANG L, EINSTEIN H H, 1998. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics and Rock Engineering, 31(4): 217-235. doi: 10.1007/s006030050022
|
| [106] |
ZHANG P X, LI X Z, ZHANG Y S, et al. , 2017. Study on influence range of pre-selected site fault based on geophysical and photogrammetry[J]. Journal of Disaster Prevention and Mitigation Engineer, 37(6): 987-993, 1000. (in Chinese with English abstract
|
| [107] |
ZHANG P X, LI X Z, ZHANG Y S, et al., 2021. Study on the evolution law and test method of the permeability characteristics of a fault-influenced zone[J]. Water Resources and Hydropower Engineering, 52(9): 135-142. (in Chinese with English abstract
|
| [108] |
ZHANG Z P, WANG Q C, 2004. The summary and comment on fault-slip analysis and palaeostress reconstruction[J]. Advances in Earth Science, 19(4): 605-613. (in Chinese with English abstract
|
| [109] |
ZHANG Z W, REN J J, ZHANG X L, 2021. Application of high-precision UAV aerial survey in the detailed study of surface rupture of Maduo MW7.4 Earthquake in 2021[J]. Technology for Earthquake Disaster Prevention, 16(3): 437-447. (in Chinese with English abstract
|
| [110] |
ZHENG J, ZHANG Y S, LI X Z, et al., 2015. Digital method for acquiring 2D density of discontinuity and its application[J]. Hydrogeology & Engineering Geology, 42(6): 80-85. (in Chinese with English abstract
|
| [111] |
ZHOU J, 2023. Application of UAV mapping technology in geological and mineral exploration [J]. China High and New Technology(10): 150-152. (in Chinese with English abstract
|
| [112] |
ZHU H H, PAN B Y, WU W, et al., 2023. Review on collection and extraction methods of rock mass discontinuity information[J]. Journal of Basic Science and Engineering, 31(6): 1339-1360. (in Chinese with English abstract
|
| [113] |
ZOU J J, HE H L, YOKOYAMA Y, et al., 2019. Paleo-earthquake study methods on bedrock fault surface: history, current situation, suggestions and prospects[J]. Seismology and Geology, 41(6): 1539-1562. (in Chinese with English abstract
|
| [114] |
ZOU J J, HE H L, ZHOU Y S, et al., 2023. Application of small unmanned aerial vehicle (SUAV) in the selection of suitable sites in paleo-seismic stury of bedrock fault surfaces[J]. Seismology and Geology, 45(4): 833-846. (in Chinese with English abstract
|
| [115] |
艾明,毕海芸,郑文俊,等,2018. 利用无人机摄影测量技术提取活动构造定量参数[J]. 地震地质,40(6):1276-1293.
|
| [116] |
陈桂华,徐锡伟,闻学泽,等,2006. 数字航空摄影测量学方法在活动构造中的应用[J]. 地球科学:中国地质大学学报,31(3):405-410.
|
| [117] |
陈书平,田作基,徐世东,等,2024. 两种结构类型的走滑相关剪断裂带[J]. 地质通报,43(1):13-19. doi: 10.12097/gbc.2023.04.005
|
| [118] |
付博,李志强,陈杰,等,2018. 微型无人机在2016年11月25日阿克陶MW6.6地震中的应用探索[J]. 地震地质,40(3):672-684. doi: 10.3969/j.issn.0253-4967.2018.03.012
|
| [119] |
高帅坡,2017. 基于无人机摄影测量技术的活动构造定量参数提取研究[D]. 北京:中国地震局地质研究所.
|
| [120] |
韩龙飞,刘静,姚文倩,等,2022. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质,44(2):484-505. doi: 10.3969/j.issn.0253-4967.2022.02.013
|
| [121] |
郝锐,王建萍,陈丹阳,等,2024. 基于JAYA算法的紫外光通信无人机编队路由优化[J]. 电子与信息学报,46(3):848-857. doi: 10.11999/JEIT230206
|
| [122] |
侯恩科,首召贵,徐友宁,等,2017. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探,45(6):102-110. doi: 10.3969/j.issn.1001-1986.2017.06.017
|
| [123] |
胡才源,章广成,李小玲,2019. 无人机遥感在高位崩塌地质灾害调查中的应用[J]. 人民长江,50(1):136-140
|
| [124] |
黄皓中,陈建平,郑彦威,2017. 基于无人机遥感的矿山地质灾害解译[J]. 地质学刊,41(3):499-503. doi: 10.3969/issn.1674-3636.2017.03.019
|
| [125] |
江晨轶,潘家伟,张丽军,等,2024. UAV SfM技术在活动构造研究中的应用:以青藏高原西北部龙木错断裂为例[J]. 地质力学学报,30(2):332-347, doi: 10.12090/j.issn.1006-6616.2023192.
|
| [126] |
金宝辉,廖梓淇,刘傲雪,2024. 无人机物流研究综述及CiteSpace可视化分析[J]. 成都工业学院学报,27(1):69-74,81.
|
| [127] |
荆洪迪,李元辉,张忠辉,等,2015. 基于三维激光扫描的岩体结构面信息提取[J]. 东北大学学报(自然科学版),36(2):280-283.
|
| [128] |
况杰,章杨松,赵佳斌,2018. 基于相位一致性图像处理的岩体裂隙自动检测[J]. 计算机工程与应用,54(24):193-197. doi: 10.3778/j.issn.1002-8331.1709-0019
|
| [129] |
雷光伟,杨春和,王贵宾,等,2016. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报,35(2):231-241.
|
| [130] |
李东臣,任俊杰,张志文,等,2022. 基于高分辨率无人机影像的地震地表破裂半自动提取方法:以2021年MS7.4青海玛多地震为例[J]. 地震地质,44(6):1484-1502. doi: 10.3969/j.issn.0253-4967.2022.06.008
|
| [131] |
李光,2021. 无人机的发展现状与趋势[J]. 现代工业经济和信息化,11(3):12-13,16.
|
| [132] |
李红强,袁道阳,苏琦,等,2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报,29(6):824-841. doi: 10.12090/j.issn.1006-6616.2023123
|
| [133] |
李金香,李亚芳,李帅,等,2017. 无人机遥感技术在新疆皮山地震灾情获取中的应用[J]. 震灾防御技术,12(3):690-699. doi: 10.11899/zzfy20170324
|
| [134] |
李路伟,余中元,陈柏旭,等,2022. 2022年泸定MS6.8地震的同震地表变形特征及地震地质启示[J]. 防灾科技学院学报,24(4):75-87. doi: 10.3969/j.issn.1673-8047.2022.04.008
|
| [135] |
李生杰,谢永利,朱小明,2013. 高速公路乌鞘岭隧道穿越F4断层破碎带涌水塌方工程对策研究[J]. 岩石力学与工程学报,32(S2):3602-3609.
|
| [136] |
李晓昭,张国永,罗国煜,2003. 地下工程中由控稳到控水的断裂屏障机制[J]. 岩土力学,24(2):220-224. doi: 10.3969/j.issn.1000-7598.2003.02.014
|
| [137] |
李昭,付碧宏,2022. 东昆仑断裂带玛沁—玛曲段晚第四纪构造活动特征的地貌响应定量研究[J]. 地震地质,44(6):1421-1447. doi: 10.3969/j.issn.0253-4967.2022.06.005
|
| [138] |
刘德民,李德威,杨巍然,等,2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据[J]. 地球科学:中国地质大学学报,30(2):147-152.
|
| [139] |
刘富财,2021. 青藏高原中部走滑断层与SN向正断层第四纪活动特征:以日干配错断裂和诺尔玛错地堑为例[D]. 北京:中国地质大学(北京),doi: 10.27493/d.cnki.gzdzy.2021.001592.
|
| [140] |
刘静,陈涛,张培震,等,2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报,58(1):41-45.
|
| [141] |
刘静,2018. 工程测绘中无人机遥感测绘技术的应用研究[J]. 世界有色金属(24):156-157.
|
| [142] |
刘帅,何斌,王涛,等,2024. 甘肃积石山县MS6.2地震同震地质灾害发育特征与易发性评价[J]. 地质力学学报,30(2):314-331, doi: 10.12090/j.issn.1006-6616.2024009.
|
| [143] |
刘顺华,王延申,2023. 无人机技术在农业机械自动化中的应用[J]. 南方农机,54(11):167-169. doi: 10.3969/j.issn.1672-3872.2023.11.045
|
| [144] |
刘小利,夏涛,刘静,等,2022. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征[J]. 地震地质,44(2):461-483. doi: 10.3969/j.issn.0253-4967.2022.02.012
|
| [145] |
刘一鸣,吴智平,颜世永,等,2021. 北部湾盆地北部坳陷马尾状构造成因新认识[J]. 中国矿业大学学报,50(1):163-175, doi: 10.13247/j.cnki.jcumt.001247.
|
| [146] |
马剑飞,李向全,张春潮,等,2022. 金沙江断裂带中段岩溶发育和地下水循环特征[J]. 地质力学学报,28(6):956-968. doi: 10.12090/j.issn.1006-6616.20222823
|
| [147] |
马金保,张波,王洋,等,2019. 基于低空遥感地貌观测的逆断层陡坎研究:以张流沟滩断层陡坎为例[J]. 地学前缘,26(2):92-103, doi: 10.13745/j.esf.sf.2019.2.6.
|
| [148] |
茅远哲,张新东,吕国军,等,2023. 应用低空航测技术识别宣化盆地南缘断裂带[J]. 高原地震,35(2):56-62. doi: 10.3969/j.issn.1005-586X.2023.02.008
|
| [149] |
邵延秀,张波,邹小波,等,2017. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质,39(6):1185-1197. doi: 10.3969/j.issn.0253-4967.2017.06.007
|
| [150] |
邵延秀,刘静,高云鹏,等,2022. 同震地表破裂的位移测量与弥散变形分析:以2021年青海玛多MW7.4地震为例[J]. 地震地质,44(2):506-523. doi: 10.3969/j.issn.0253-4967.2022.02.014
|
| [151] |
王凤艳,陈剑平,付学慧,等,2008. 基于VirtuoZo的岩体结构面几何信息获取研究[J]. 岩石力学与工程学报,27(1):169-175. doi: 10.3321/j.issn:1000-6915.2008.01.024
|
| [152] |
王文鑫,邵延秀,姚文倩,等,2022. 基于摄影测量技术对玛多MW7.4地震地表破裂特征的快速提取及三维结构的室内重建[J]. 地震地质,44(2):524-540. doi: 10.3969/j.issn.0253-4967.2022.02.015
|
| [153] |
魏占玉,RAMON A,何宏林,等,2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质,37(2):636-648. doi: 10.3969/j.issn.0253-4967.2015.02.024
|
| [154] |
邬雪江,2023. 小型无人机航测在农田信息监测中的应用研究[J]. 自动化应用,64(3):1-3. doi: 10.3969/j.issn.1674-778X.2023.3.zdhyy202303001
|
| [155] |
熊保颂,李雪,2020. 基于便携式无人机SfM方法的活动构造地貌位错测量:以阿尔金断裂中段为例[J]. 科学技术与工程,20(26):10848-10855. doi: 10.3969/j.issn.1671-1815.2020.26.044
|
| [156] |
许顺山,彭华,NIETO-SAMANIEGO A F,等,2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性[J]. 地质论评,63(2):287-301.
|
| [157] |
许文涛,李晓昭,章杨松,等,2022. 基于摄影测量系统的岩体结构面精细识别表征及应用[J]. 测绘学报,51(10):2093-2106. doi: 10.11947/j.AGCS.2022.20220359
|
| [158] |
杨春和,包宏涛,王贵宾,等,2006. 岩体节理平均迹长和迹线中点面密度估计[J]. 岩石力学与工程学报,25(12):2475-2480. doi: 10.3321/j.issn:1000-6915.2006.12.013
|
| [159] |
杨春和,梅涛,王贵宾,等,2007. 甘肃北山芨芨采石场岩体节理特征研究[J]. 岩石力学与工程学报(S2):3849-3854.
|
| [160] |
杨会军,胡春林,谌文武,等,2004. 断层及其破碎带隧道信息化施工[J]. 岩石力学与工程学报,23(22):3917-3922. doi: 10.3321/j.issn:1000-6915.2004.22.033
|
| [161] |
杨勇忠,任俊杰,李东臣,2023. 基于SAR影像的干旱区冲/洪积扇地貌面定量分期研究:以河西走廊西部沙漠区的疏勒河洪积扇为例[J]. 地质力学学报,29(6):842-855. doi: 10.12090/j.issn.1006-6616.2023080
|
| [162] |
袁道阳,谢虹,苏瑞欢,等,2023. 2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229-244, doi: 10.6038/cjg2022Q0093.
|
| [163] |
袁曼飞,谢忠俍,2018. 基于无人机遥感测绘技术在矿山测量中的应用研究[J]. 中国锰业,36(5):11-13,20
|
| [164] |
曾勇,周睿,唐军,等,2024. 全网应急通信无人机系统设计及对地覆盖策略[J]. 电讯技术,64(7):995-1004, doi: 10.20079/j.issn.1001-893x.230912003.
|
| [165] |
张克旗,吴中海,吕同艳,等,2015. 光释光测年法:综述及进展[J]. 地质通报,34(1):183-203. doi: 10.3969/j.issn.1671-2552.2015.01.015
|
| [166] |
张培兴,李晓昭,章杨松,等,2017. 综合物探与摄影测量的预选场址断裂影响范围研究[J]. 防灾减灾工程学报,37(6):987-993,1000.
|
| [167] |
张培兴,李晓昭,章杨松,等,2021. 断层影响带渗透特性演化规律与实测方法研究[J]. 水利水电技术(中英文),52(9):135-142.
|
| [168] |
张志文,任俊杰,章小龙,2021. 高精度无人机航测在2021年玛多7. 4级地震地表破裂精细研究中的应用[J]. 震灾防御技术,16(3):437-447.
|
| [169] |
张仲培,王清晨,2004. 断层滑动分析与古应力恢复研究综述[J]. 地球科学进展,19(4):605-613. doi: 10.3321/j.issn:1001-8166.2004.04.018
|
| [170] |
周坚,2023. 无人机测绘技术在地质矿产勘查中的应用[J]. 中国高新科技(10):150-152.
|
| [171] |
朱合华,潘柄屹,武威,等,2023. 岩体结构面信息采集及识别方法研究进展[J]. 应用基础与工程科学学报,31(6):1339-1360
|
| [172] |
邹俊杰,何宏林,周永胜,等,2023. 小型无人机(SUAV)在基岩区古地震研究选点中的应用[J]. 地震地质,45(4):833-846. doi: 10.3969/j.issn.0253-4967.2023.04.002
|