LIU J X,CAO L,GUO Z W,et al.,2024. Electrical characteristics and metallogenic prediction of Baishawo rare metal deposit in northeast Hunan Province[J]. Journal of Geomechanics,30(5):768−780 doi: 10.12090/j.issn.1006-6616.2024060
Citation: LIU J X,CAO L,GUO Z W,et al.,2024. Electrical characteristics and metallogenic prediction of Baishawo rare metal deposit in northeast Hunan Province[J]. Journal of Geomechanics,30(5):768−780 doi: 10.12090/j.issn.1006-6616.2024060

Electrical characteristics and metallogenic prediction of Baishawo rare metal deposit in northeast Hunan Province

doi: 10.12090/j.issn.1006-6616.2024060
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant No. 42130810), Provincial Natural Science of Foundation of Hunan (Grants No. 2023JJ60164, 2023JJ60166), Scientific Research Project of the Geological Bureau of Hunan Province, China (Grant No. HNGS202201), and Scientific Research Project of Leading Talents of the Geological Bureau of Hunan Province, China (Grant No. HNGSTP202318).
More Information
  •   Objective  The aim of this study is to characterize the deep electrical structure of the Baishawo pegmatite-type deposits, explore the spatial distribution of rare metal mineralization models and ore-conferring carriers, and elucidate the relationship between the location of ore veins to provide a basis for prediction in rare metal mineral exploration.   Methods  Through the controlled-source audio-geomagnetic method (CSAMT) and the conjugate gradient method of inverse measurement of three exploration profiles, deep hidden rock (ore) bodies were detected. Then, by combining these results with the information from drill holes and elemental geochemical anomalies, a comprehensive analysis was carried out to reveal the distribution of the hidden dikes and the mineralization characteristics.   Results  The study showed that the concealed pegmatite veins are mainly located in the Lengjiaxi Group, where they are concentrated on the top of the granite body and around tectonic fissures and have burial depths ranging from 50 to 300 m. The geophysical signature of pegmatite vein mineralization is a high-resistance vein-like geologic body intruded from a deep high-resistance body into a shallow low-resistance body.   Conclusion  The determined distribution and burial depth of concealed pegmatite veins, identified potential concealed veins in the study area, and geophysical characteristics of the pegmatite vein mineralization provide a basis for understanding the formation mechanism of fracture zone-constrained pegmatite veins. Significance The research results provide a scientific basis for follow-up exploration of the Baishawo deposit, reveal the formation mechanism of the pegmatite veins, and provide reliable physical exploration and prediction technology and experience useful for rare metal exploration in northeast Hunan and south China.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    CAO C H, WEN C H, LOU F S, et al., 2020. Geophysical responses of typical rare metal deposits and implications on geophysical prospecting in Hunan province, China[J]. Geotectonica et Metallogenia, 44(6): 1096-1112. (in Chinese with English abstract
    [2]
    CAO X Z, ZHANG W S, SUN H S, 2009. Progress in the study of deep exploration in China[J]. Geological Science and Technology Information, 28(2): 104-109. (in Chinese with English abstract
    [3]
    ČERNÝ P, ERCIT T S, 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005
    [4]
    CHEN J F, JAHN B M, 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1-2): 101-133. doi: 10.1016/S0040-1951(97)00186-8
    [5]
    CHENG C G, LI Y, ZHANG K, et al., 2011. A preliminary study on prospecting deep-seated hidden ore body in the Yueshan intrusion using CSAMT[J]. Geology of Anhui, 21(1): 52-59. (in Chinese with English abstract
    [6]
    DE GROOT-HEDLIN C D, CONSTABLE S C, 1990. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data[J]. Geophysics, 55(12): 1613-1624. doi: 10.1190/1.1442813
    [7]
    DI Q Y, MARTYN UNSWORTH, WANG M Y, 2006.2. 5-Dimensional Finite Element Method CSAMT Numerical Inversion[J]. Petroleum Geophysical Exploration, (01): 100-106+122+129. (in Chinese with English abstract
    [8]
    DONG H, WEI W B, YE G F, et al., 2012. Study of two dimensional magnetotelluric inversions of complex three dimensional structures[J]. Chinese Journal of Geophysics, 55(12): 4003-4014, doi: 10.6038/j.issn.0001-5733.2012.12.012
    [9]
    FAN J B, YANG R, HAO X F, et al., 2022. Application of audio-frequency magnetotelluric sounding to deep prospecting and prediction of rare metal deposit in Jiajika area[J]. Contributions to Geology and Mineral Resources Research, 37(1): 111-117. (in Chinese with English abstract
    [10]
    GUO Z W, XUE G Q, LIU J X, et al., 2020. Electromagnetic methods for mineral exploration in China: A review[J]. Ore Geology Reviews, 118: 103357. doi: 10.1016/j.oregeorev.2020.103357
    [11]
    HE H Y, WANG J R, WEN W, et al., 2024. Deep structure of epithermal deposits in Youxi area: insights from CSAMT and dual-frequency IP data[J]. Minerals, 14(1): 27.
    [12]
    HE M X, HU X Y, CHEN Y P, et al. 2008. Application of one-dimensional inversion of CSAMT Occam[J]. Journal of Engineering Geophysics, (04): 439-443. (in Chinese with English abstract
    [13]
    HOU Z Q, CHEN J, ZHAI M G, 2020. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 65(33): 3651-3652. (in Chinese with English abstract doi: 10.1360/TB-2020-1417
    [14]
    HUANG N, SHAO K, ZHANG B S, et al., 2014. The application of CSAMT and induced electric medium gradient method to one lead—zinc polymetallic ore in one district of Guangdong[J]. Chinese Journal of Engineering Geophysics, 11(6): 797-801. (in Chinese with English abstract
    [15]
    JIAO Y J, HUANG X R, LIANG S X, et al., 2021. Deep structure and prospecting significance of the Cuonadong dome, Tethys Himalaya, China: geophysical constraints[J]. Geological Journal, 56(1): 253-264. doi: 10.1002/gj.3962
    [16]
    LEI D, 2010. Studies and applications of 2-D CSAMT modeling and inversion with a dipole source and topography[J]. Chinese Journal of Geophysics, 53(4): 982-993. (in Chinese with English abstract
    [17]
    LI B, DING Y H, ZHANG Z H, et al., 2014. Application of CSAMT to deep iron ore exploration in Wuyang area, Henan province[J]. Contributions to Geology and Mineral Resources Research, 29(1): 108-113. (in Chinese with English abstract
    [18]
    LI T D, 2022. Development history of geological and mineral survey in China[J]. Journal of Geomechanics, 28(5): 653-682. (in Chinese with English abstract
    [19]
    LIN C H, TAN H D, SHU Q, et al., 2012. Three-dimensional conjugate gradient inversion of CSAMT data[J]. Chinese Journal of Geophysics, 55(11): 3829-3838. (in Chinese with English abstract
    [20]
    LIU G D, 1992. Comprehensive study of geophysics for shallow layer[J]. Progress in Geophysics, 7(4): 1-3. (in Chinese with English abstract
    [21]
    LIU J X, LIU R, GUO R W, et al., 2023. Research progress of electromagnetic method in nonferrous metal mineral exploration[J]. The Chinese Journal of Nonferrous Metals, 33(1): 261-284. (in Chinese with English abstract
    [22]
    LIU J X, ZHOU K K, LIU H D, et al., 2023. Metallogenic prediction of magnetite in the Pandian area at the northwest margin of Luxi uplift, China: constraints of wide-field electromagnetic data[J]. Remote Sensing, 15(5): 1217. doi: 10.3390/rs15051217
    [23]
    LU H F, WANG Z F, WANG H, et al., 2013. The application of CSAMT and GS on prospecting and evaluation in Baishan molybdenum deposit, Hami, Xinjiang[J]. Progress in Geophysics, 28(3): 1547-1556. (in Chinese with English abstract
    [24]
    LV H Q, XU L Y, YANG B, et al., 2022. Mineralization based on CSAMT and SIP sounding data: a case study on the Hadamengou gold deposit in Inner Mongolia[J]. Minerals, 12(11): 1404. doi: 10.3390/min12111404
    [25]
    MAO J W, YUAN S D, XIE G Q, et al., 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st century[J]. Mineral Deposits, 38(5): 935-969. (in Chinese with English abstract
    [26]
    RODI W, MACKIE R L, 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 66(1): 174-187. doi: 10.1190/1.1444893
    [27]
    SHEN P, PAN H D, LI C H, et al., 2023. Lithium deposits in the Central Asian Metallogenic Domain: Metallogenic regularity and model[J]. Acta Petrologica Sinica, 39(11): 3185-3209. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.11.01
    [28]
    STRANGWAY D W, SWIFT JR C M, HOLMER R C, 1973. The application of audio-frequency magnetotellurics (AMT) to mineral exploration[J]. Geophysics, 38(6): 1159-1175. doi: 10.1190/1.1440402
    [29]
    WANG D H, 2016. A discussion on some problems concerning deep exploration of mineral resources in South China[J]. Geology in China, 43(5): 1585-1598. (in Chinese with English abstract
    [30]
    WANG D H, WANG R J, SUN Y, et al., 2016. A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China[J]. Acta Geoscientica Sinica, 37(5): 569-580. (in Chinese with English abstract
    [31]
    WANG D H, DAI H Z, LIU S B, et al., 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743-764. (in Chinese with English abstract
    [32]
    WANG R T, 1999. Characteristics of geophysical and geochemical anomalies in main gold deposits of devonian strata along the Qinling orogenic belt(Shaanxi part)and indicators for prospecting[J]. Geophysical & Geochemical Exploration, 23(1): 14-20. (in Chinese with English abstract
    [33]
    WANG R, WANG M Y, 2007. One-dimensional full data CSAMT inversion[J]. Petroleum Geophysical Exploration, (01): 107-114+132-133+125. (in Chinese with English abstract
    [34]
    WANG X L, ZHOU J C, CHEN X, et al., 2017. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735+696. (in Chinese with English abstract
    [35]
    WANG Y F, GUO R W, LIU J X, et al., 2024. A divergence-free vector finite-element method for efficient 3D magnetotelluric forward modeling[J]. Geophysics, 89(1): E1-E11. doi: 10.1190/geo2023-0037.1
    [36]
    WEI W B, 2002. New advance and prospect of magnetotelluric sounding (MT) in China[J]. Progress in Geophysics, 17(2): 245-254. (in Chinese with English abstract
    [37]
    WEN C H, CHEN J F, LIN B H, LUO X Y. 2018a. 2018 Implementation Program of the Survey and Evaluation of Rare Metals in Key Mining Aggregation Areas of Hunan. Changsha: Hunan Geological Survey Institute: 1-55. (in Chinese with English abstract
    [38]
    WEN C H, CHEN J F, LUO X Y. 2018b. Report on the results of the survey and evaluation of rare metals in key mining concentration areas of Hunan. Changsha: Hunan Geological Survey Institute: 1-124. (in Chinese with English abstract
    [39]
    WEN C H, CHEN J F, CAO C H, 2020. Study on the mineralization of rare metal pegmatite in Lianyunshan ore district, Hunan Province[J]. Geological Review, 66(S1): 135-136. (in Chinese with English abstract
    [40]
    WEN C H, SHAO Y J, XIONG Y Q, et al., 2021. Ore genesis of the Baishawo Be-Li-Nb-Ta deposit in the northeast Hunan Province, south China: Evidence from geological, geochemical, and U-Pb and Re-Os geochronologic data[J]. Ore Geology Reviews, 129: 103895. doi: 10.1016/j.oregeorev.2020.103895
    [41]
    WEN Z L, HUANG M, XU G F, et al., 2024. Discovery and significance of pegmatitic rare metal deposits in Shangshi area, Lianyunshan, Northeast Hunan Province[J]. Chinese Journal of Geology, 59(4): 961-970. (in Chinese with English abstract doi: 10.12017/dzkx.2024.068
    [42]
    XU D R, WANG L, LI P C, et al., 2009. Petrogenesis of the Lianyunshan granites in northeastern Hunan Province, South China, and its geodynamic implications[J]. Acta Petrologica Sinica, 25(5): 1056-1078. (in Chinese with English abstract
    [43]
    XUE G Q, DENG X, 2007. Detectability of thin layers by transient electromagnetic method[J]. Petroleum Geophysical Exploration, (06): 709-713+733+609. (in Chinese with English abstract
    [44]
    YANG N F, HE Y J, YANG L T, 2014. Application of CSAMT method in deep prospecting of Cuihongshan Fe polymetallic deposit[J]. Global Geology, 33(4): 880-888. (in Chinese with English abstract
    [45]
    ZHAI M G, WU F Y, HU R Z, et al, 2019. Strategic key metal mineral resources: Current status and problems[J]. China Science Foundation, 33(02): 106-111. (in Chinese with English abstract
    [46]
    ZHOU J J, QIANG J K, TANG J T, et al., 2010. 1-D optimization inversion of CSAMT data with intervention mechanism[J]. Seismology and Geology, 32(3): 453-464. (in Chinese with English abstract
    [47]
    曹创华,文春华,楼法生,等,2020. 湖南省典型稀有金属矿床地球物理响应特征及物探找矿方法研究[J]. 大地构造与成矿学,44(6):1096-1112.
    [48]
    曹新志,张旺生,孙华山,2009. 我国深部找矿研究进展综述[J]. 地质科技情报,28(2):104-109.
    [49]
    程长根,李勇,张凯,等,2011. 在月山岩体利用大地音频电磁测深(CSAMT)法寻找深部隐伏矿体的初步研究[J]. 安徽地质,21(1):52-59. doi: 10.3969/j.issn.1005-6157.2011.01.012
    [50]
    董浩,魏文博,叶高峰,等,2012. 大地电磁测深二维反演方法求解复杂电性结构问题的适应性研究[J]. 地球物理学报,55(12):4003-4014, doi: 10.6038/j.issn.0001-5733.2012.12.012.
    [51]
    底青云,Martyn Unsworth,王妙月,2006.2. 5维有限元法CSAMT数值反演[J]. 石油地球物理勘探,(01):100-106+122+129.
    [52]
    范俊波,杨荣,郝雪峰,等,2022. 音频大地电磁测深在甲基卡深部找矿预测中的应用研究[J]. 地质找矿论丛,37(1):111-117. doi: 10.6053/j.issn.1001-1412.2022.01.015
    [53]
    何梅兴,胡祥云,陈玉萍,等,2008. CSAMT奥克姆一维反演的应用[J]. 工程地球物理学报,(04):439-443. doi: 10.3969/j.issn.1672-7940.2008.04.011
    [54]
    侯增谦,陈骏,翟明国,2020. 战略性关键矿产研究现状与科学前沿[J]. 科学通报,65(33):3651-3652.
    [55]
    雷达,2010. 起伏地形下CSAMT二维正反演研究与应用[J]. 地球物理学报,53(4):982-993. doi: 10.3969/j.issn.0001-5733.2010.04.023
    [56]
    李冰,丁云河,张智慧,等,2014. CSAMT法在河南舞阳地区寻找深部铁矿中的应用[J]. 地质找矿论丛,29(1):108-113. doi: 10.6053/j.issn.1001-1412.2014.01.015
    [57]
    李廷栋,2022. 中国地质矿产调查事业发展历程[J]. 地质力学学报,28(5):653-682. doi: 10.12090/j.issn.1006-6616.20222818
    [58]
    林昌洪,谭捍东,舒晴,等,2012. 可控源音频大地电磁三维共轭梯度反演研究[J]. 地球物理学报,55(11):3829-3838. doi: 10.6038/j.issn.0001-5733.2012.11.030
    [59]
    刘光鼎,1992. 浅层地球物理综合研究[J]. 地球物理学进展,7(4):1-3.
    [60]
    柳建新,童孝忠,郭荣文,等,2012. 大地电磁测深法勘探:资料处理、反演与解释[M]. 北京:科学出版社.
    [61]
    柳建新,刘嵘,郭荣文,等,2023. 电磁法在有色金属矿产勘查中的研究进展[J]. 中国有色金属学报,33(1):261-284. doi: 10.11817/j.ysxb.1004.0609.2022-43043
    [62]
    毛景文,袁顺达,谢桂青,等,2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质,38(5):935-969.
    [63]
    王登红,2016. 对华南矿产资源深部探测若干问题的探讨:以若干超大型矿床深部找矿突破为例[J]. 中国地质,43(5):1585-1598. doi: 10.12029/gc20160509
    [64]
    王登红,王瑞江,孙艳,等,2016. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报,37(5):569-580. doi: 10.3975/cagsb.2016.05.06
    [65]
    王登红,代鸿章,刘善宝,等,2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报,28(5):743-764. doi: 10.12090/j.issn.1006-6616.20222811
    [66]
    王若,王妙月,2007. 一维全资料CSAMT反演[J]. 石油地球物理勘探,(1):107-114+132-133+125
    [67]
    王孝磊,周金城,陈昕,等,2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报,36(5):714-735
    [68]
    魏文博,2002. 我国大地电磁测深新进展及瞻望[J]. 地球物理学进展,17(2):245-254. doi: 10.3969/j.issn.1004-2903.2002.02.009
    [69]
    文春华,陈剑锋,林碧海,罗小亚. 2018a. 湖南重点矿集区稀有金属调查评价2018年实施方案. 长沙:湖南省地质调查院:1–55.
    [70]
    文春华,陈剑锋,罗小亚. 2018b. 湖南重点矿集区稀有金属调查评价成果报告. 长沙:湖南省地质调查院:1–124.
    [71]
    文春华,陈剑锋,曹创华,2020. 湖南连云山矿集区稀有金属伟晶岩成矿作用研究[J]. 地质论评,66(S1):135-136.
    [72]
    文志林,黄明,许国锋,等,2024. 湘东北连云山上石地区伟晶岩型稀有金属矿床的发现及意义[J]. 地质科学,59(4):961-970.
    [73]
    许德如,王力,李鹏春,等,2009. 湘东北地区连云山花岗岩的成因及地球动力学暗示[J]. 岩石学报,25(5):1056-1078.
    [74]
    薛国强,邓湘,2007. 瞬变电磁法对薄层的探测能力[J]. 石油地球物理勘探,(06):709-713+733+609. doi: 10.3321/j.issn:1000-7210.2007.06.018
    [75]
    杨乃峰,何英杰,杨李汀,2014. CSAMT法在翠宏山铁多金属矿床深部找矿中的应用[J]. 世界地质,33(4):880-888. doi: 10.3969/j.issn.1004-5589.2014.04.016
    [76]
    翟明国,吴福元,胡瑞忠,等,2019. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,33(02):106-111.
    [77]
    周俊杰,强建科,汤井田,等,2010. 具有干预机制的CSAMT数据一维最优化反演[J]. 地震地质,32(3):453-464. doi: 10.3969/j.issn.0253-4967.2010.03.012
  • Relative Articles

    LYU Yuanyuan. 2024: Variation patterns of boron and lithium isotopes in salt lakes on the Qinghai–Tibetan Plateau and their application in evaluating resources in the Damxung Co salt lake. Journal of Geomechanics, 30(1): 107-128. doi: 10.12090/j.issn.1006-6616.2023135
    LIU Songyan, ZHANG Da, YANG Mingjian, ZHANG Xinming, WEI Guodong, NIE Shengqiang, WANG Xuan, FENG Yanping, LI Wenjie, CHEN Guilan. 2024: Characteristics of chlorites from the Haopinggou Ag–Au polymetallic deposit in the Xiong’ershan ore concentration area and its exploration implications. Journal of Geomechanics, 30(1): 129-146. doi: 10.12090/j.issn.1006-6616.2023121
    HUO Hailong, CHEN Zhengle, ZHANG Qing, WANG Yong, MA Huadong, WANG Wei, ZHANG Wengao, LI Yong, HAN Fengbin, DU Xiaofei, MIN Zhuang, MENG Xiangpeng. 2024: Quartz deformation characteristics, deformation temperature, and their constraints on pegmatites of the 509 Daobanxi lithium deposit in the West Kunlun area, Xinjiang. Journal of Geomechanics, 30(1): 72-87. doi: 10.12090/j.issn.1006-6616.2023078
    WANG Denghong, DAI Hongzhang, LIU Shanbao, LI Jiankang, WANG Chenghui, LOU Debo, YANG Yueqing, LI Peng. 2022: New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743-764. doi: 10.12090/j.issn.1006-6616.20222811
    TANG Wenchun, DUAN Wei, ZOU Lin, YANG Guibing, ZHANG Wei, XIONG Guan. 2022: A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China. Journal of Geomechanics, 28(5): 765-792. doi: 10.12090/j.issn.1006-6616.20222812
    ZHENG Fanbo, WANG Guoguang, NI Pei. 2021: Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits. Journal of Geomechanics, 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050
    CHEN Pengyuan, WU Peng, HAN Runsheng, ZHOU Mengxiang, LI Maoping, ZHAO Dong, JIANG Longyan. 2020: Model of rock and ore controlling structures in the Baoshan Cu-Pb-Zn polymetallic deposit, southern Hunan province, China. Journal of Geomechanics, 26(3): 405-418. doi: 10.12090/j.issn.1006-6616.2020.26.03.035
    WANG Jian, ZHU Lixin, MA Shengming, ZHOU Weiwei, CHEN Fenghe, SU Zhenhua, JIA Zhichao. 2019: THE APPLICATION OF THE INTEGRATED GEOLOGICAL, GEOPHYSICAL AND GEOCHEMICAL PROSPECTING METHOD IN THE DISCOVERY OF THE LONGTOUSHAN LEAD POLYMETALLIC DEPOSIT IN NORTHERN HEBEI PROVINCE. Journal of Geomechanics, 25(1): 9-18. doi: 10.12090/j.issn.1006-6616.2019.25.01.002
    XUE Wei, ZHANG Da, LI Chengyuan, FANG Ye, CHEN Zidan. 2019: STRUCTURAL ORE-CONTROLLING MODEL AND PROSPECTING RESEARCH FOR THE DULONG SN-ZN-IN POLYMETALLIC DEPOSIT, SOUTHEASTERN YUNNAN. Journal of Geomechanics, 25(1): 77-89. doi: 10.12090/j.issn.1006-6616.2019.25.01.008
    LI Zhenhuan, LIU Xuelong, CHEN Jianhang, LUO Ying, ZHANG Changzhen, WANG Shuaishuai. 2019: S-PB ISOTOPIC CHARACTERISTICS OF JINCHANGHE IRON-COPPER-LEAD-ZINC POLYMETALLIC DEPOSIT IN BAOSHAN CITY, YUNNAN PROVINCE. Journal of Geomechanics, 25(S1): 115-118. doi: 10.12090/j.issn.1006-6616.2019.25.S1.019
    ZHANG Zhi, QI Fanyu, ZHEN Shimin. 2019: THE CHARACTERISTICS OF ORE-CONTROLLING STRUCTURE IN THE BAOSHAN CU-PB-ZN POLYMETALLIC DEPOSIT, HUNAN PROVINCE. Journal of Geomechanics, 25(S1): 39-43. doi: 10.12090/j.issn.1006-6616.2019.25.S1.007
    YANG Jing, ZHENG De-wen, CHEN Wen, WU Ying, XU Ying-xia, YANG Li. 2017: 40Ar/39Ar GEOCHRONOLOGY OF SUPERGENE JAROSITE FROM LIUHUANGSHAN COPPER POLYMETALLIC DEPOSITS IN Tu-Ha BASIN AND THE ENLIGHMENT TO WEATHERING, LANDSCAPE EVOLUTION AND PALEOCLIMATE. Journal of Geomechanics, 23(2): 232-242.
    ZHANG Da, WU Gan-guo, WU Jian-she, CHEN Xiang-yun. 2003: Re-Os AGES OF THE ZHONGJIA TIN POLYMETALLIC DEPOSIT,SOUTHWESTERN FUJIAN, AND THEIR GEOLOGICAL SIGNIFICANCE. Journal of Geomechanics, 9(3): 261-267.
    FENG Yan-wei. 2001: THE STUDY OF METHOD ABOUT SOME MINUTE METALLIC SULPHIDE SEPARATION AND EXTRACTION. Journal of Geomechanics, 7(2): 151-154.
    ZHU Da-gang, MENG Xian-gang, PENG Shao-mei, FENG Xiang-yang, SHAO Zhao-gang, WANG Jian-ping. 2001: GENERAL FEATURES OF THE WESTERN GUANGDONG NAPPE TECTONIC SYSTEM AND ITS CONTROL ON THE NOBLE METAL AND POLYMETALLIC DEPOSITS. Journal of Geomechanics, 7(1): 22-32.
    Cheng Zhengle, Zhou Xianqiang, Song Yougui. 1997: ORE-CONTROLLING STRUCTURE IN THE PLOY-METALLIC ORE DEPOSITS IN SHALIUHENANQU,DULAN,QINGHAI PROVINCE. Journal of Geomechanics, 3(2): 82-89.
  • 加载中

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (201) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return