Volume 30 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
ZHU J Q,GONG X L,YU J,et al.,2024. Prevention and control of land subsidence and earth fissures in Suzhou–Wuxi–Changzhou region[J]. Journal of Geomechanics,30(5):811−833 doi: 10.12090/j.issn.1006-6616.2024051
Citation: ZHU J Q,GONG X L,YU J,et al.,2024. Prevention and control of land subsidence and earth fissures in Suzhou–Wuxi–Changzhou region[J]. Journal of Geomechanics,30(5):811−833 doi: 10.12090/j.issn.1006-6616.2024051

Prevention and control of land subsidence and earth fissures in Suzhou–Wuxi–Changzhou region

doi: 10.12090/j.issn.1006-6616.2024051
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant No. 42230710).
More Information
  • Author Bio:

    朱锦旗,江苏省地质调查研究院院长、研究员级高级工程师。2023年获得第十八次李四光地质科学奖野外奖。先后荣获“江苏省有突出贡献的中青年专家”“江苏省五一劳动奖章”“江苏省先进工作者”等荣誉称号,享受国务院政府特殊津贴。长期从事水文地质环境地质工作,围绕破解制约经济社会发展的重大资源环境问题,先后组织开展了服务城镇化进程的安全守护战、服务国家重大区域发展规划的战略攻坚战、服务生态文明建设的绿色保卫战等三大战役。主持实施的苏锡常地区地面沉降(地裂缝)防控研究,推动苏锡常地面沉降问题在全国率先得到有效遏制;牵头实施的国家重大战略区“综合地质调查”,首次发现连云港地区具备建设地下水封洞库的地质条件,支撑徐圩建设江苏首个地下大型能源储备库;负责和指导十个设区市的城市地质调查,推动江苏在全国率先实现设区市城市地质调查全覆盖,夯实了城市高质量发展的底盘;推动江苏干热岩等地热清洁能源勘查重大突破、助力江苏省国家“山水林田湖草沙一体化保护和修复工程”零的突破,为美丽江苏建设贡献地质智慧;探索以矿地融合为特色的地质工作新模式,为地勘单位转型发展提供示范。出版专著6部,发表论文17篇。荣获省部级一等奖2项、二等奖6项

  • Received: 2024-03-24
  • Revised: 2024-07-30
  • Accepted: 2024-08-01
  • Available Online: 2024-09-26
  • Published: 2024-10-28
  •   Objective  The Suzhou–Wuxi–Changzhou region is one of the most severely affected areas by land subsidence, both in China and globally. In the early 1970s, land subsidence occurred and resulted in the formation of ground fissures caused by differential subsidence, thus resulting in significant economic losses. In this century, the rate of ground subsidence has decreased, with some areas experiencing regional ground resilience. The unique developmental history of ground subsidence allows one to comprehensively interpret its evolutionary process and causal mechanisms. This study aims to unravel the life cycle and driving forces of land subsidence in the Suzhou–Wuxi–Changzhou region.   Methods  To achieve this, a multifaceted approach was employed, including long-term and large-scale monitoring of three-dimensional seepage, stress, and strain, complemented by physical experimental models and numerical simulations. An analysis was conducted to synthesize the macro-evolutionary patterns and causal mechanisms of land subsidence and the formation of ground fissures.   Results and Conclusion   The findings indicate that land subsidence in the Suzhou–Wuxi–Changzhou region exhibits distinct characteristics that evolve through five discernible stages: initiation, rapid development, deceleration, stagnation, and rebound. The development of land subsidence is intricately connected to groundwater extraction, with stratum deformation arising predominantly from the compaction and dewatering of aquifers and aquitards due to pumping. During the subsidence phase, primary aquifer sand and contiguous aquitards are identified as the primary contributors to subsidence. By dissecting the causal mechanisms of land subsidence and ground fissures, this study delineates the spatiotemporal evolution of the structural compression and rebound of strata under varying conditions of deep groundwater exploitation, restriction, and prohibition, along with their respective contributions to subsidence. Ground fissures, which act as a secondary geological hazard at certain stages of subsidence, exhibit a spatial distribution and occurrence time that are closely related to groundwater levels, land subsidence, bedrock undulations, and soil-layer structural disparities. The life cycle of ground fissures can be encapsulated by the mechanical processes of compression, tension, shearing, and rebound, which highlights the triggers and critical thresholds for fissure formation due to differential subsidence. An integrated “sky–air–ground” monitoring system that can perform full-section fiber-optic monitoring in geological boreholes and amalgamates diverse technical methods is established to obtain scientific and granular data support for land-subsidence control and prevention. Furthermore, an innovative finite-element coupling interface element method customized for regional and site-specific scales is developed. This method successfully simulates the mechanisms of stratum deformation as well as the genesis and propagation of ground fissures under complex three-dimensional geological conditions, thus facilitating the precise identification and management of subsidence and fissure prone areas.   Significance   This study highlights the government’s land subsidence control measures at various stages, which are characterized by technological innovations such as groundwater extraction restrictions and bans, thus setting a precedent for land subsidence management and groundwater resource stewardship in other provinces and cities across China.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    BAWDEN G W, THATCHER W, STEIN R S, et al., 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects[J]. Nature, 412(6849): 812-815. doi: 10.1038/35090558
    [2]
    BRAMBATI A, CARBOGNIN L, QUAIA T, et al., 2003. The lagoon of Venice: geological setting, evolution and land subsidence[J]. Episodes, 26(3): 264-268. doi: 10.18814/epiiugs/2003/v26i3/020
    [3]
    CHEN C X, PEI S P, JIAO J, 2003. Land subsidence caused by groundwater exploitation in Suzhou City, China[J]. Hydrogeology Journal, 11(2): 275-287. doi: 10.1007/s10040-002-0225-5
    [4]
    Department of Land and Resources of Jiangsu Province, 2012. Geological disaster prevention and control planning (2011-2020) in Jiangsu province[EB/OL]. (2012-04-06)[2024-03-24]. https://zrzy.jiangsu.gov.cn/gtxxgk/nrglIndex.action?type=2&messageID=2c9082547d5e4398017d5ed727f10008. (in Chinese)
    [5]
    GONG X L, GENG J S, SUN Q, et al., 2020. Experimental study on pumping-induced land subsidence and earth fissures: a case study in the Su-Xi-Chang region, China[J]. Bulletin of Engineering Geology and the Environment, 79(9): 4515-4525, doi: 10.1007/s10064-020-01864-1
    [6]
    GUO H P, LI W P, WANG L Y, et al., 2021. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 48(3): 162-171. (in Chinese with English abstract
    [7]
    GUO K Y, GUO S Q, YU J, et al. , 2005. Groundwater resources and geohazards surveying and evaluation in Yangtze Delta area[R]. Nanjing Institute of Geology and Mineral Resources, and Jiangsu Geological Survey and Research Institute,Shanghai Institute of Geological Survey, Geological Environment Monitoring Stationof Zhejiang Province, Geological Survey of Zhejiang Province. (in Chinese)
    [8]
    HELM D C, 1994. Horizontal aquifer movement in a Theis-Thiem confined system[J]. Water Resources Research, 30(4): 953-964. doi: 10.1029/94WR00030
    [9]
    HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al., 2021. Mapping the global threat of land subsidence[J]. Science, 371(6524): 34-36. doi: 10.1126/science.abb8549
    [10]
    HU Z Q, XU X L, ZHAO Y L, 2012. Dynamic monitoring of land subsidence in mining area from multi-source remote-sensing data – a case study at Yanzhou, China[J]. International Journal of Remote Sensing, 33(17): 5528-5545. doi: 10.1080/01431161.2012.663113
    [11]
    JIANG L M, LIN H, MA J W, et al., 2011. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (northern China) case study[J]. Remote Sensing of Environment, 115(2): 257-268. doi: 10.1016/j.rse.2010.08.008
    [12]
    Jiangsu Provincial People's Government, 2015. The approval of groundwater compression exploitation plan (2014-2020): Su Zhengfu [2015] No. 19[EB/OL]. (2015-03-16). https://www.jiangsu.gov.cn/art/2015/3/16/art_46143_2542910.html. (in Chinese)
    [13]
    LI C J, TANG X M, MA T H, 2006. Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China[J]. Hydrogeology Journal, 14(8): 1652-1665. doi: 10.1007/s10040-006-0092-6
    [14]
    LI W, WU J Q, 2015. Research on monitoring method system of land subsidence in Suzhou-Wuxi-Changzhou area[J]. Global Geology, 34(3): 862-869. (in Chinese with English abstract
    [15]
    LI Y T, TEATINI P, YU J, et al., 2021. Aseismic multifissure modeling in unfaulted heavily pumped basins: mechanisms and applications[J]. Water Resources Research, 57(10): e2021WR030127, doi: 10.1029/2021WR030127
    [16]
    LI Z, LUO Z J, WANG Q, et al., 2019. A three-dimensional fluid-solid model, coupling high-rise building load and groundwater abstraction, for prediction of regional land subsidence[J]. Hydrogeology Journal, 27(4): 1515-1526. doi: 10.1007/s10040-018-01920-x
    [17]
    LIU C, YUAN X J, ZHU J Q, 2004. Earth fissures in Su-Xi-Chang[M]. Wuhan: China University of Geosciences Press. (in Chinese)
    [18]
    LIU H P, 2010. The study on the land subsidence with the affect of high-rise buildings in Tianjin Binhai New Area[D]. Xi’an: Chang’an University. (in Chinese with English abstract
    [19]
    LIU M Y, ZHANG Q Q, GONG X L, et al. , 2022. Study on soil deformation characteristic and the life process of land subsidence in Changzhou Area of Jiangsu province[J]. Shanghai Land & Resources, 43(4): 50-55, 72. (in Chinese with English abstract
    [20]
    LUO Z J, ZHANG X, TIAN X W, 2018. Prediction and early warning of Cangzhou land subsidence disaster[J]. Journal of Engineering Geology, 26(2): 365-373. (in Chinese with English abstract
    [21]
    Ministry of Land and Resources, Ministry of Water Resources, 2012. National plan for prevention and control of land subsidence (2011-2020)[EB/OL]. (2012-02-22)[2024-03-24]. https://www.mnr.gov.cn/dt/ywbb/201810/t20181030_2261387.html. (in Chinese)
    [22]
    NELSON F E, ANISIMOV O A, SHIKLOMANOV N I, 2001. Subsidence risk from thawing permafrost[J]. Nature, 410(6831): 889-890. doi: 10.1038/35073746
    [23]
    NOTTI D, MATEOS R M, MONSERRAT O, et al., 2016. Lithological control of land subsidence induced by groundwater withdrawal in new urban areas (Granada Basin, SE Spain). Multiband DInSAR monitoring[J]. Hydrological Processes, 30(13): 2317-2331. doi: 10.1002/hyp.10793
    [24]
    PARSONS T, 2021. The weight of cities: Urbanization effects on Earth's subsurface[J]. AGU Advances, 2(1): e2020AV000277. doi: 10.1029/2020AV000277
    [25]
    SAYYAF M, MAHDAVI M, BARANI O R, et al., 2014. Simulation of land subsidence using finite element method: Rafsanjan plain case study[J]. Natural Hazards, 72(2): 309-322. doi: 10.1007/s11069-013-1010-6
    [26]
    SHI X Q, XUE Y Q, WU J C, et al., 2006a. A study of soil deformation properties of the groundwater system in the Changzhou area[J]. Hydrogeology & Engineering Geology, 33(3): 1-6. (in Chinese with English abstract
    [27]
    SHI X Q, XUE Y Q, ZHANG Y, et al. , 2006b. Creep model of Changzhou silty clay[J]. Geotechnical Investigation & Surveying, 34(5): 16-18, 70. (in Chinese with English abstract
    [28]
    SHI X Q, XUE Y Q, WU J C, et al., 2007. Uniaxial compression tests for creep model of saturated sand in Changzhou[J]. Journal of Engineering Geology, 15(2): 212-216. (in Chinese with English abstract
    [29]
    SHI X Q, WU J C, YE S J, et al., 2008. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai city, China[J]. Engineering Geology, 100(1-2): 27-42, doi: 10.1016/j.enggeo.2008.02.011
    [30]
    SHI X Q, FENG Z X, YAO B K, et al., 2014. Study on the deformation characteristics of soil layers after banning groundwater pumping in Su-Xi-Chang area[J]. Quaternary Sciences, 34(5): 1062-1071. (in Chinese with English abstract
    [31]
    State Council, 2011. Decision on strengthening the prevention and control of geological hazards: Guo Fa 〔2011〕 No. 20[EB/OL]. (2011-06-13)[2024-03-24]. https://www.gov.cn/zhengce/zhengceku/2011-06/17/content_2744.htm. (in Chinese)
    [32]
    SUN X H, PENG J B, CUI X M, et al., 2016. Relationship between ground fissures, groundwater exploration and land subsidence in Taiyuan basin[J]. The Chinese Journal of Geological Hazard and Control, 27(2): 91-98. (in Chinese with English abstract
    [33]
    The Standing Committee of Jiangsu Provincial People's Congress, 2021. Decision on prohibiting the exploitation of groundwater in the Suzhou-Wuxi Changzhou area for a limited period of time: bulletin of the standing committee of Jiangsu provincial people's congress. [2000] No. 5[EB/OL]. (2021-10-08)[2024-03-24]. https://www.jsrd.gov.cn/qwfb/sjfg/202110/t20211008_532359.shtml. (in Chinese)
    [34]
    WANG G Y, YU J, WU S L, et al., 2009. Land subsidence and compression of soil layers in Changzhou Area[J]. Geology and Exploration, 45(5): 612-620. (in Chinese with English abstract
    [35]
    WANG G Y, YOU G, ZHU J Q, et al., 2016. Earth fissures in Su-Xi-Chang region, Jiangsu, China[J]. Surveys in Geophysics, 37(6): 1095-1116. doi: 10.1007/s10712-016-9388-9
    [36]
    WU J Q, WU S L, LI W, et al. , 2009. Construction of risk assessment index system for land subsidence disasters in the Suzhou-Wuxi-Changzhou region[C]//Proceedings of the 2009 academic annual conference of the Chinese geological society. Beijing: Chinese Geological Society: 277-278. (in Chinese)
    [37]
    WU J Q, WU S L, MIN W, et al., 2014. Review on recent progress of land subsidence control in Suzhou-Wuxi-Changzhou area[J]. Journal of Geology, 38(2): 319-323. (in Chinese with English abstract
    [38]
    XUE Y Q, ZHANG Y, YE S J, et al., 2003. Land subsidence in China and its problems[J]. Quaternary Sciences, 23(6): 585-593. (in Chinese with English abstract
    [39]
    XUE Y Q, WU J C, ZHANG Y, et al., 2008. Simulation of regional land subsidence in the southern Yangtze Delta[J]. Science in China Series D: Earth Sciences, 51(6): 808-825. doi: 10.1007/s11430-008-0062-z
    [40]
    XUE Y Q, 2012. Discussion on groundwater overexploitation and ground settlement[J]. Ground Water, 34(6): 1-5. (in Chinese with English abstract
    [41]
    YAN X X, GONG S L, ZENG Z Q, et al., 2002. Relationship between building density and land subsidence in Shanghai urban zone[J]. Hydrogeology & Engineering Geology, 29(6): 21-25. (in Chinese with English abstract
    [42]
    YE S J, 2004. Study on the regional land subsidence model and its application[D]. Nanjing: Nanjing University. (in Chinese with English abstract
    [43]
    YE S J, XUE Y Q, 2005. Stress-strain analysis for storage coefficients and vertical hydraulic conductivities of aquitards in Shanghai area[J]. Rock and Soil Mechanics, 26(2): 256-260. (in Chinese with English abstract
    [44]
    YE S J, XUE Y Q, ZHANG Y, et al., 2005. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 27(2): 140-147. (in Chinese with English abstract
    [45]
    YE S J, XUE Y Q, WU J C, et al., 2011. Regional land subsidence model embodying complex deformation[J]. Proceedings of the Institution of Civil Engineers -Water Management, 164(10): 519-531. doi: 10.1680/wama.1000062
    [46]
    YE S J, FRANCESCHINI A, ZHANG Y, et al., 2018. A novel approach to model earth fissure caused by extensive aquifer exploitation and its application to the Wuxi Case, China[J]. Water Resources Research, 54(3): 2249-2269, doi: 10.1002/2017WR021872
    [47]
    YU J, WANG X M, SU X S, et al., 2004. The mechanism analysis on ground fissure disaster formation in Suzhou-Wuxi-Changzhou area[J]. Journal of Jilin University (Earth Science Edition), 34(2): 236-241. (in Chinese with English abstract
    [48]
    YU J, WANG X M, WU J Q, et al., 2006. Characteristics of land subsidence and its remedial proposal in Suzhou-Wuxi-Changzhou area[J]. Geological Journal of China Universities, 12(2): 179-184. (in Chinese with English abstract
    [49]
    YU J, WU J C, YE S J, et al., 2007. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology, 34(5): 11-16. (in Chinese with English abstract
    [50]
    YU J, WU J Q, 2008. Preliminary research on risk evaluation management model of land subsidence in Su-Xi-Chang region[J]. Jiangsu Geology, 32(2): 113-117. (in Chinese with English abstract
    [51]
    ZHANG Y, WU J C, XUE Y Q, et al., 2017. Fully coupled three-dimensional nonlinear numerical simulation of pumping-induced land movement[J]. Environmental Earth Sciences, 76(16): 552. doi: 10.1007/s12665-017-6891-3
    [52]
    ZHANG Y, YU J, GONG X L, et al., 2018. Pumping-induced stress and strain in aquifer systems in Wuxi, China[J]. Hydrogeology Journal, 26(3): 771-787. doi: 10.1007/s10040-017-1697-7
    [53]
    ZHU J Q, JIAO X, YU J, et al., 2008. Evaluation of earth fissures based on GA-ANN coupling model in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology & Engineering Geology, 35(4): 106-110. (in Chinese with English abstract
    [54]
    ZHU J Q, ZHANG W Q, YU J, et al. , 2016. Hazards of soil cracking and experimental research[M]. Xuzhou: China University of Mining and Technology Press. (in Chinese)
    [55]
    ZHU L, GONG H L, LI X J, et al., 2024. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 51(4): 167-177. (in Chinese with English abstract
    [56]
    郭海朋,李文鹏,王丽亚,等,2021. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质,48(3):162-171.
    [57]
    郭坤一,郭盛乔,于军,等,2005. 长江三角洲地区地下水资源与地质灾害调查评价[R]. 南京地质矿产研究所,江苏省地质调查研究院,上海市地质调查研究院,浙江省地质环境监测总站,浙江省地质调查院.
    [58]
    国土资源部,水利部,2012. 《全国地面沉降防治规划(2011—2020年)》[EB/OL]. (2012-02-22)[2024-03-24]. https://www.mnr.gov.cn/dt/ywbb/201810/t20181030_2261387.html.
    [59]
    国务院,2011. 关于加强地质灾害防治工作的决定:国发〔2011〕20号[EB/OL]. (2011-06-13)[2024-03-24]. https://www.gov.cn/zhengce/zhengceku/2011-06/17/content_2744.htm.
    [60]
    江苏省国土资源厅,2012. 《江苏省地质灾害防治规划(2011-2020年)》[EB/OL]. (2012-04-06)[2024-03-24]. https://zrzy.jiangsu.gov.cn/gtxxgk/nrglIndex.action?type=2&messageID=2c9082547d5e4398017d5ed727f10008.
    [61]
    江苏省人民代表大会常务委员会,2021. 关于在苏锡常地区限期禁止开采地下水的决定:江苏省人民代表大会常务委员会公报〔2000〕5号[EB/OL]. (2021-10-08)[2024-03-24]. https://www.jsrd.gov.cn/qwfb/sjfg/202110/t20211008_532359.shtml.
    [62]
    江苏省人民政府,2015. 关于江苏省地下水压采方案(2014-2020年)的批复:苏政复〔2015〕19号[EB/OL]. (2015-03-16)[2024-03-24]. https://www.jiangsu.gov.cn/art/2015/3/16/art_46143_2542910.html.
    [63]
    李伟,武健强,2015. 苏锡常地区地面沉降监测方法体系建设[J]. 世界地质,34(3):862-869. doi: 10.3969/j.issn.1004-5589.2015.03.035
    [64]
    刘聪,袁晓军,朱锦旗,2004. 苏锡常地裂缝[M]. 武汉:中国地质大学出版社.
    [65]
    刘寒鹏,2010. 天津滨海新区高层建筑荷载作用下地面沉降研究[D]. 西安:长安大学.
    [66]
    刘明遥,张其琪,龚绪龙,等,2022. 江苏常州地区地面沉降变形特征与生命过程研究[J]. 上海国土资源,43(4):50-55,72. doi: 10.3969/j.issn.2095-1329.2022.04.010
    [67]
    骆祖江,张鑫,田小伟,2018. 沧州市地面沉降灾害预测预警[J]. 工程地质学报,26(2):365-373.
    [68]
    庞炳乾,宋默,徐兴源,等,1984. 常州市水文地质工程地质环境地质综合勘察报告(1:50000)[R]. 常州:江苏省地矿局第1水文地质工程地质大队.
    [69]
    施小清,薛禹群,吴吉春,等,2006a. 常州地区含水层系统土层压缩变形特征研究[J]. 水文地质工程地质,33(3):1-6.
    [70]
    施小清,薛禹群,张云,等,2006b. 常州地区粉质粘土的蠕变模型[J]. 工程勘察,34(5):16-18,70.
    [71]
    施小清,薛禹群,吴吉春,等,2007. 饱和砂性土流变模型的试验研究[J]. 工程地质学报,15(2):212-216. doi: 10.3969/j.issn.1004-9665.2007.02.012
    [72]
    施小清,冯志祥,姚炳奎,等,2014. 苏锡常地区深层地下水禁采后土层变形特征分析[J]. 第四纪研究,34(5):1062-1071. doi: 10.3969/j.issn.1001-7410.2014.05.15
    [73]
    孙晓涵,彭建兵,崔向美,等,2016. 山西太原盆地地裂缝与地下水开采、地面沉降关系分析[J]. 中国地质灾害与防治学报,27(2):91-98.
    [74]
    王光亚,于军,吴曙亮,等,2009. 常州地区地面沉降及地层压缩性研究[J]. 地质与勘探,45(5):612-620.
    [75]
    武健强,吴曙亮,李伟,等,2009. 苏锡常地区地面沉降灾害风险评价指标体系构建[C]//中国地质学会2009年学术年会论文集. 北京:中国地质学会:277-278.
    [76]
    武健强,吴曙亮,闵望,等,2014. 苏锡常地区地面沉降防控最新进展评述[J]. 地质学刊,38(2):319-323. doi: 10.3969/j.issn.1674-3636.2014.02.319
    [77]
    薛禹群,张云,叶淑君,等,2003. 中国地面沉降及其需要解决的几个问题[J]. 第四纪研究,23(6):585-593. doi: 10.3321/j.issn:1001-7410.2003.06.001
    [78]
    薛禹群,吴吉春,张云,等,2008. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学 D辑:地球科学,38(4):477-492, doi: 10.3321/j.issn:1006-9267.2008.04.010.
    [79]
    薛禹群,2012. 论地下水超采与地面沉降[J]. 地下水,34(6):1-5. doi: 10.3969/j.issn.1004-1184.2012.06.001
    [80]
    严学新,龚士良,曾正强,等,2002. 上海城区建筑密度与地面沉降关系分析[J]. 水文地质工程地质,29(6):21-25. doi: 10.3969/j.issn.1000-3665.2002.06.006
    [81]
    叶淑君,2004. 区域地面沉降模型的研究与应用[D]. 南京:南京大学.
    [82]
    叶淑君,薛禹群,2005. 应用沉降和水位数据计算上海地区弱透水层的参数[J]. 岩土力学,26(2):256-260. doi: 10.3969/j.issn.1000-7598.2005.02.018
    [83]
    叶淑君,薛禹群,张云,等,2005. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报,27(2):140-147. doi: 10.3321/j.issn:1000-4548.2005.02.002
    [84]
    于军,王晓梅,苏小四,等,2004. 苏锡常地区地裂缝地质灾害形成机理分析[J]. 吉林大学学报(地球科学版),34(2):236-241.
    [85]
    于军,王晓梅,武健强,等,2006. 苏锡常地区地面沉降特征及其防治建议[J]. 高校地质学报,12(2):179-184. doi: 10.3969/j.issn.1006-7493.2006.02.004
    [86]
    于军,吴吉春,叶淑君,等,2007. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质,34(5):11-16. doi: 10.3969/j.issn.1000-3665.2007.05.004
    [87]
    于军,武健强,2008. 苏锡常地区地面沉降风险评价管理模型研究初探[J]. 江苏地质,32(2):113-117.
    [88]
    朱锦旗,焦珣,于军,等,2008. 基于GA-ANN的苏锡常地裂缝危险性评价[J]. 水文地质工程地质,35(4):106-110. doi: 10.3969/j.issn.1000-3665.2008.04.025
    [89]
    朱锦旗,张卫强,于军,等,2016. 土体裂缝危害及试验研究[M]. 徐州:中国矿业大学出版社有限责任公司.
    [90]
    朱琳,宫辉力,李小娟,等,2024. 区域地面沉降研究进展与展望[J]. 水文地质工程地质,51(4):167-177.
  • 加载中

Catalog

    Figures(23)  / Tables(3)

    Article Metrics

    Article views (198) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return