Wu Zhenhan, 1998. ON THE EFFECT OF ALTERNATING STRESS RESULTING FROM THE TIDAL FORCE AND ITS BEARING ON GEODYNAMICS. Journal of Geomechanics, 4 (3): 20-27.
Citation: ZHANG S S,HU X L,ZHANG G C,et al.,2024. Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China[J]. Journal of Geomechanics,30(5):795−810 doi: 10.12090/j.issn.1006-6616.2024031

Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China

doi: 10.12090/j.issn.1006-6616.2024031
Funds:  This research is financially supported by National Natural Science Foundation of China (Grant No. U22A20601).
More Information
  •   Objective  Most hydroelectric projects in western China are located in alpine canyons. The intricate geological engineering conditions in this area have contributed to the widespread distribution of landslide disasters across the reservoir banks of hydroelectric projects.  Methods  Based on the engineering geological characteristics of western alpine canyons, correlations between topography, geological structure, landslide material, slope structure, hydrogeological conditions, and the formation and progression of landslides were analyzed. We also delineated the types and features of landslide development in the western region, as well as the mechanisms governing the evolution of typical landslide disasters.  Results  Results indicate that the landslides were characterized by slopes ranging from 30° to 50°, elevations exceeding 1000 m, and volumes surpassing one million cubic meters. Triassic, Ordovician, and Silurian strata were identified as the principal slippery strata in this area. Rainfall and reservoir impoundment significantly influenced landslide stability, leading to erosion, datum uplift, and range expansion. Water level fluctuations resulted in diminished rock and soil properties along the leading edge of advancing landslides.  Conclusion  The most frequent landslides in the western alpine region included accumulated landslides dominated by traction, thrust, and composite mechanisms and rock landslides dominated by bedding, buckling, anti-dip, and seating mechanisms.   Significance   This study elucidates landslide disaster mechanisms under varying evolutionary and mechanical failure processes, providing significant guidance for the identification, monitoring, early warning, and prevention of landslide disasters in the western region.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    BELLONI L G, STEFANI R, 1987. The Vajont slide: instrumentation: past experience and the modern approach[J]. Engineering Geology, 24(1-4): 445-474. doi: 10.1016/0013-7952(87)90079-2
    [2]
    CHEN Z L, ZHANG X Y, SHEN F, et al., 1999. GPS monitoring of the crustal motion in southwestern China[J]. Chinese Science Bulletin, 44(19): 1804-1807. (in Chinese with English abstract doi: 10.1007/BF02886164
    [3]
    CHENG G D, JIN H J, 2013. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 40(1): 1-11. (in Chinese with English abstract
    [4]
    China electricity council, 2007. Design specification for slope of hydropower and water conservancy project: DL/T 5353-2006[S]. Beijing: China Electric Power Press: 6-72. (in Chinese)
    [5]
    DU Y, YAN E C, CAI J S, et al., 2023. Mechanical discrimination of stability state of progressive failure of broken-line complex landslides[J]. Chinese Journal of Geotechnical Engineering, 45(6): 1151-1161. (in Chinese with English abstract
    [6]
    HU R J, FAN Z L, WANG Y J, et al., 2002. Groundwater resources and their characteristics in arid lands of northwestern China[J]. Journal of Natural Resources, 17(3): 321-326. (in Chinese with English abstract
    [7]
    HUANG R Q, 2007. large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract
    [8]
    HUANG R Q, 2009. Some catastrophic landslides since the twentieth century in the southwest of China[J]. Landslides, 6(1): 69-81. doi: 10.1007/s10346-009-0142-y
    [9]
    KENNEDY R, TAKE W A, SIEMENS G, 2021. Geotechnical centrifuge modelling of retrogressive sensitive clay landslides[J]. Canadian Geotechnical Journal, 58(10): 1452-1465. doi: 10.1139/cgj-2019-0677
    [10]
    LEI Q X, 2017. Analysis of formation mechanism and environmental effects of collapses and landslides at Hanyuan-Tongjiezi in the Dadu River[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract
    [11]
    LIAN B Q, PENG J B, ZHAN H B, et al., 2020. Formation mechanism analysis of irrigation-induced retrogressive loess landslides[J]. CATENA, 195: 104441. doi: 10.1016/j.catena.2019.104441
    [12]
    LIU G R, YAN E C, LIAN C, 2002. Discussion on classification of landslides[J]. Journal of Engineering Geology, 10(4): 339-342. (in Chinese with English abstract
    [13]
    LU S Q, YI Q L, YI W, et al. , 2014. Analysis of deformation and failure mechanism of Shuping landslide in Three Gorges reservoir area[J]. Rock and Soil Mechanics, 35(4): 1123-1130, 1202. (in Chinese with English abstract
    [14]
    LU Y F, 2015. Deformation and failure mechanism of slope in three dimensions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 7(2): 109-119. doi: 10.1016/j.jrmge.2015.02.008
    [15]
    PENG J B, LENG Y Q, ZHU X H, et al., 2016. Development of a loess-mudstone landslide in a fault fracture zone[J]. Environmental Earth Sciences, 75(8): 658. doi: 10.1007/s12665-016-5336-8
    [16]
    ROSSO R, RULLI M C, VANNUCCHI G, 2006. A physically based model for the hydrologic control on shallow landsliding[J]. Water Resources Research, 42(6): W06410.
    [17]
    SUN G Z, 1988. Rock mass structure mechanics[M]. Beijing: Science Press. (in Chinese)
    [18]
    TANG H M, ZHANG G C, 2005. A study on slope stability during reservoir water level falling[J]. Rock and Soil Mechanics, 26(S2): 11-15. (in Chinese with English abstract
    [19]
    TANG H M, LI D W, HU X L, 2009. Faulting characteristics of Wenchuan earthquake and evaluation theory of regional crustal stability for engineering[J]. Journal of Engineering Geology, 17(2): 145-152. (in Chinese with English abstract
    [20]
    TANG H M, ZOU Z X, XIONG C R, et al., 2015. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021
    [21]
    TANG Y Y, 1992. The effect of neotectonic movement on formations of landslide and debris flow in Southern Gansu[J]. Journal of Lanzhou University (Natural Sciences), 28(4): 152-160. (in Chinese with English abstract
    [22]
    VARNES D J, 1978. Slope movement types and processes[R]. Washington: Transportation Research Board Special Report.
    [23]
    WANG F, TANG H M, ZHANG G C, et al., 2018. Development characteristics and evolution mechanism of the deep-seated toppling in the upstream of the Yalong River, China[J]. Mountain Research, 36(3): 411-421. (in Chinese with English abstract
    [24]
    WANG K W, DENG C J, ZHANG F, 2012. Formation process of Tanggudong landslide and Yuri accumulation body in Yalong river valley in southwest China[J]. Journal of Engineering Geology, 20(6): 955-970. (in Chinese with English abstract
    [25]
    WANG G X, 2005. Key technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering, 24(21): 3818-3827. (in Chinese with English abstract
    [26]
    WANG L S, ZHANG Z Y, 1979. Basic geomechanic model of slope deformation[C]//Proceedings of the First Engineering Geology Congress. Suzhou. (in Chinese)
    [27]
    WANG Q Z, LI Z Q, YIN Y, et al., 2020. Distribution characteristics of typical geological relics in the Western Sichuan Plateau[J]. Open Geosciences, 12(1): 307-323. doi: 10.1515/geo-2020-0104
    [28]
    WANG S J, 1966. An engineering geological study on the mechanical behaviour of a rock mass[J]. Chinese Journal of Geology, 7(1): 64-78. (in Chinese with English abstract
    [29]
    XU J R, ZHAO Z X, ISHIKAWA Y, 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland[J]. Chinese Journal of Geophysics, 51(3): 770-781. (in Chinese with English abstract
    [30]
    XU L, DAI F C, CHEN J, et al., 2014. Analysis of a progressive slope failure in the Xiangjiaba reservoir area, Southwest China[J]. Landslides, 11(1): 55-66. doi: 10.1007/s10346-012-0373-1
    [31]
    XU Q, HUANG R Q, LI X Z, 2004. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 19(3): 478-483. (in Chinese with English abstract
    [32]
    XU Q, HUANG R Q, 2008. Kinetics characteristics of large landslides triggered by May 12th Wenchuan earthquake[J]. Journal of Engineering Geology, 16(6): 721-729. (in Chinese with English abstract
    [33]
    YAN G Q, YIN Y P, HUANG B L, et al., 2022. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 43(9): 2568-2580. (in Chinese with English abstract
    [34]
    YI Z J, 2010. Research on formation mechanism and stability of Tanggudong giant landslide of Lenggu hydropower station[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract
    [35]
    YIN K L, ZHOU C M, CHAI B, 2014. Reservoir area failure mechanism and criterion of counter-tilt rock slopes at Wuxia gorge section in three gorges[J]. Chinese Journal of Rock Mechanics and Engineering, 33(8): 1635-1643. (in Chinese with English abstract
    [36]
    YIN Y P, PENG X M, 2007. Failure mechanism on Qianjiangping landslide in the three gorges reservoir region[J]. Hydrogeology & Engineering Geology, 34(3): 51-54. (in Chinese with English abstract
    [37]
    YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract
    [38]
    ZHANG D, WU Z H, LI J C, et al., 2013. An overview on earthquake-induced landslide research[J]. Journal of Geomechanics, 19(3): 225-241. (in Chinese with English abstract
    [39]
    ZHANG L F, WU Y P, MIAO F S, et al., 2019. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide[J]. Rock and Soil Mechanics, 40(12): 4767-4776. (in Chinese with English abstract
    [40]
    ZHANG S S, HU X L, ZHANG G C, et al. , 2018. Catastrophic evolution and control technology of major landslides in western hydropower project[M]. Beijing: China Water & Power Press. (in Chinese)
    [41]
    ZOU Z X, TANG H M, XIONG C R, et al., 2012. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2222-2231. (in Chinese with English abstract
    [42]
    中国电力企业联合会,2007. 水电水利工程边坡设计规范:DL/T 5353—2006[S]. 北京:中国电力出版社:6-72.
    [43]
    陈智梁,张选阳,沈凤,等,1999. 中国西南地区地壳运动的GPS监测[J]. 科学通报,44(8):851-854. doi: 10.3321/j.issn:0023-074X.1999.08.015
    [44]
    程国栋,金会军,2013. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质,40(1):1-11.
    [45]
    杜毅,晏鄂川,蔡静森,等,2023. 折线型复合式滑坡渐进破坏稳定性状态的力学判别[J]. 岩土工程学报,45(6):1151-1161. doi: 10.11779/CJGE20220184
    [46]
    胡汝骥,樊自立,王亚俊,等,2002. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报,17(3):321-326. doi: 10.3321/j.issn:1000-3037.2002.03.012
    [47]
    黄润秋,2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    [48]
    雷清雄,2017. 大渡河汉源—铜街子段崩、滑灾害成因机制及环境效应研究[D]. 成都:成都理工大学.
    [49]
    刘广润,晏鄂川,练操,2002. 论滑坡分类[J]. 工程地质学报,10(4):339-342. doi: 10.3969/j.issn.1004-9665.2002.04.001
    [50]
    卢书强,易庆林,易武,等,2014. 三峡库区树坪滑坡变形失稳机制分析[J]. 岩土力学,35(4):1123-1130,1202.
    [51]
    孙广忠,1988. 岩体结构力学[M]. 北京:科学出版社.
    [52]
    唐辉明,章广成,2005. 库水位下降条件下斜坡稳定性研究[J]. 岩土力学,26(S2):11-15.
    [53]
    唐辉明,李德威,胡新丽,2009. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报,17(2):145-152. doi: 10.3969/j.issn.1004-9665.2009.02.001
    [54]
    唐永仪,1992. 新构造运动在陇南滑坡泥石流形成中的作用[J]. 兰州大学学报(自然科学版),28(4):152-160. doi: 10.3321/j.issn:0455-2059.1992.04.027
    [55]
    王飞,唐辉明,章广成,等,2018. 雅砻江上游深层倾倒体发育特征及形成演化机制[J]. 山地学报,36(3):411-421.
    [56]
    王恭先,2005. 滑坡防治中的关键技术及其处理方法[J]. 岩石力学与工程学报,24(21):3818-3827. doi: 10.3321/j.issn:1000-6915.2005.21.003
    [57]
    王兰生,张倬元,1979. 斜坡岩体变形破坏的基本模式[C]//第一届工程地质大会论文. 苏州.
    [58]
    王孔伟,邓成进,张帆,2012. 中国西南雅砻江流域唐古栋滑坡及雨日堆积体形成机理分析. 工程地质学报,20(06):955-970.
    [59]
    王思敬,1966. 以工程地质观点探讨岩体的力学属性[J]. 地质科学,7(1):64-78.
    [60]
    徐纪人,赵志新,石川有三,2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报,51(3):770-781. doi: 10.3321/j.issn:0001-5733.2008.03.018
    [61]
    许强,黄润秋,李秀珍,2004. 滑坡时间预测预报研究进展[J]. 地球科学进展,19(3):478-483. doi: 10.3321/j.issn:1001-8166.2004.03.021
    [62]
    许强,黄润秋,2008. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报,16(6):721-729. doi: 10.3969/j.issn.1004-9665.2008.06.001
    [63]
    闫国强,殷跃平,黄波林,等,2022. 三峡库区顺层灰岩岸坡劣化-溃屈灾变机制研究[J]. 岩土力学,43(9):2568-2580.
    [64]
    易志坚,2010. 楞古水电站唐古栋巨型滑坡成因机制及稳定性研究[D]. 成都:成都理工大学.
    [65]
    殷坤龙,周春梅,柴波,2014. 三峡库区巫峡段反倾岩石边坡的破坏机制及判据[J]. 岩石力学与工程学报,33(8):1635-1643.
    [66]
    殷跃平,彭轩明,2007. 三峡库区千将坪滑坡失稳探讨[J]. 水文地质工程地质,34(3):51-54. doi: 10.3969/j.issn.1000-3665.2007.03.013
    [67]
    殷跃平,2008. 汶川八级地震地质灾害研究[J]. 工程地质学报,16(4):433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001
    [68]
    张铎,吴中海,李家存,等,2013. 国内外地震滑坡研究综述[J]. 地质力学学报,19(3):225-241. doi: 10.3969/j.issn.1006-6616.2013.03.001
    [69]
    张龙飞,吴益平,苗发盛,等,2019. 推移式缓倾浅层滑坡渐进破坏力学模型与稳定性分析[J]. 岩土力学,40(12):4767-4776.
    [70]
    张世殊,胡新丽,章广成,等,2018. 西部水电工程重大滑坡灾变演化及控制技术[M]. 北京:中国水利水电出版社.
    [71]
    邹宗兴,唐辉明,熊承仁,等,2012. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报,31(11):2222-2231. doi: 10.3969/j.issn.1000-6915.2012.11.010
  • Relative Articles

    QIU Zhendong, GUO Changbao, YANG Zhihua, WU Ruian, YAN Yiqiu, ZHANG Yiying, JIN Feng, CHEN Wenkai. 2024: Spatial structure characteristics and formation mechanism of the ancient Deda landslide elucidated using the microtremor survey method in Sichuan Province, China. Journal of Geomechanics, 30(6): 906-920. doi: 10.12090/j.issn.1006-6616.2023183
    CHEN Yunfei, ZHANG Peng, HUANG Bolin, QIN Panpan, LI Qiuwang. 2022: Failure process and long-term stability analysis of typical unstable rock mass in the Three Gorges Reservoir area considering rock mass deterioration. Journal of Geomechanics, 28(6): 938-947. doi: 10.12090/j.issn.1006-6616.20222821
    YAN Jinkai, HUANG Junbao, LI Hailong, CHEN Liang, ZHANG Yanling. 2020: Study on instability mechanism of shallow landslide caused by typhoon and heavy rain. Journal of Geomechanics, 26(4): 481-491. doi: 10.12090/j.issn.1006-6616.2020.26.04.041
    PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, LENG Yanqiu, FAN Zhongjie, WANG Shaokai. 2020: Dynamic formation mechanism of landslide disaster on the Loess Plateau. Journal of Geomechanics, 26(5): 714-730. doi: 10.12090/j.issn.1006-6616.2020.26.05.059
    WANG Jiayun, SHI Xiaoya. 2018: MECHANICAL ANALYSIS OF APPARENT DIP BUCKLING MECHANISM OF STEEP STRATIFIED OBLIQUE ROCK: A CASE STUDY OF SHANYANG ROCKSLIDE IN SHAANXI PROVINCE. Journal of Geomechanics, 24(4): 482-489. doi: 10.12090/j.issn.1006-6616.2018.24.04.050
    CHEN Rui-ming, ZHA Xian-feng, GU Ping-yang, ZHUANG Yu-jun. 2017: THE LANDFORM FORMATION PROCESS OF ALPINE-GORGE IN BEISHAN, WUSHI COUNTY, SOUTHWESTERN TIANSHAN. Journal of Geomechanics, 23(2): 264-271.
    LI Peng-yue, BA Ren-ji, NI Hua-yong, WANG Dong-hui. 2017: SIMULATION ANALYSIS OF THE INFLUENCE OF THE RESERVOIR WATER LEVEL FLUCTUATION RATE ON THE STABILITY OF SHUANGJIAPING ACCUMULATION LANDSLIDE IN YA'AN. Journal of Geomechanics, 23(2): 288-295.
    XIN Peng, WU Shuren, ZHANG Zelin, LIU Jiamei, WANG Tao, SHI Jusong. 2017: DISTRIBUTION CHARACTERISTICS AND FORMATION MECHANISM OF LANDSLIDES TRIGGERED BY ACTIVITIES OF BAOJI-WUSHAN SEGMENT AT THE NORTHERN MARGIN OF WESTERN QINLING FAULT ZONE. Journal of Geomechanics, 23(5): 723-733.
    WANG Gang, SUN Ping, WU Lizhou, SHI Lunyan, ZHU Enzhen. 2017: EXPERIMENTAL STUDY ON DEFORMATION AND FAILURE MECHANISM OF SHALLOW LOESS LANDSLIDE UNDER THE EFFECT OF IRRIGATION. Journal of Geomechanics, 23(5): 778-787.
    LI Hao, YANG Wei-min, HUANG Xiao, LIU Ting, TIAN You, CHENG Xiao-jie. 2016: CHARACTERISTICS AND DEFORMATION MECHANISM OF SHUIWAN SEISMIC LOESS LANDSLIDE IN MAIJI, TIANSHUI. Journal of Geomechanics, 22(1): 12-24.
    MENG Peng-yan, SUN Jie, YU Chang-chun, MU Chao, SHUAI Shuang, XIE Fei, MENG Dan. 2016: LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN. Journal of Geomechanics, 22(4): 907-920.
    GU Ping-yang, CHEN Rui-ming, CHA Xian-feng, ZHUANG Yu-jun, HU Chao-bin, LI Pei-qing, CHA Fang-Yong, LI Lin, Guo Ya-ping. 2016: EXPLORATION AND PRACTICE OF 1: 50000 GEOLOGICAL MAPPING TECHNIQUES FOR ALPINE-GORGE AREA: A CASE STUDY IN BEISHAN AREA OF WUSHI, XINJIANG. Journal of Geomechanics, 22(4): 837-855.
    TTIAN You, YANG Wei-min, LIU Ting, LI Hao, CHENG Xiao-jie. 2015: DEFORMATION MECHANISM AND EVOLUTIONARY PROCESS OF THE TIANSHUI FORGING MACHINE PLANT LANDSLIDE IN GANSU. Journal of Geomechanics, 21(2): 298-308.
    WANG Tao, HU Qiu-yun, ZHANG Yong-shuang, WU Shu-ren, XIN Peng. 2014: MULTI-SCALE LANDSLIDE HAZARD ASSESSMENT FOR KEY SECTION OF CHENGDU-LANZHOU RAILWAY, WENCHUAN SEISMIC REGION. Journal of Geomechanics, 20(4): 379-391.
    HUANG Xiao, YANG Wei-min, ZHANG Chun-shan, SHEN Jun-feng, LIU Ting. 2013: DEFORMATION CHARACTERISTICS AND FORMATION MECHANISM OF XIELIUPO LANDSLIDE IN ZHOUQU. Journal of Geomechanics, 19(2): 178-187.
    WANG Zhi-hua, DU Ming-liang, GUO Zhao-cheng, JIA Wei-jie. 2012: STUDY ON THE GEOMECHANICAL MODEL OF LANDSLIDE WITH LOW DIP ANGLE STRATA STRUCTURE:TAKING FENGDIAN LANDSLIDE AS AN EXAMPLE. Journal of Geomechanics, 18(2): 97-109, 186.
    TAO Qian, LIU Chao, ZHU Zhi-ming, YANG Yong, ZOU Zuyin. 2012: NUMERICAL SIMULATION OF LANDSLIDE MECHANISM AT ERMANSHAN IN HANYUAN UNDER DIFFERENT CONDITIONS. Journal of Geomechanics, 18(4): 440-450.
    Wang Weifeng, Lu Shikuo, Sun Yueping. 1997: TECTONIC EVOLUTION OF THE SEDIMENTARY BASINS IN WESTERN LIAONING PROVINCE AND THEIR GENESIS TYPE. Journal of Geomechanics, 3(3): 80-89.
    0: Study on the formation mechanism of altered ophiolitic landslide in the upper reaches of Jinsha River—A case study of the Duirongtong landslide. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024084
  • 加载中

Catalog

    Figures(12)  / Tables(9)

    Article Metrics

    Article views (420) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return