Volume 29 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
LIU L Y,LI K Z,WANG N W,et al.,2023. In-situ stress characteristics and rockburst tendency of surrounding rocks in the Shuiwangzhuang gold deposit, Zhaoyuan, Shandong province[J]. Journal of Geomechanics,29(3):417−429 doi: 10.12090/j.issn.1006-6616.20232910
Citation: LIU L Y,LI K Z,WANG N W,et al.,2023. In-situ stress characteristics and rockburst tendency of surrounding rocks in the Shuiwangzhuang gold deposit, Zhaoyuan, Shandong province[J]. Journal of Geomechanics,29(3):417−429 doi: 10.12090/j.issn.1006-6616.20232910

In-situ stress characteristics and rockburst tendency of surrounding rocks in the Shuiwangzhuang gold deposit, Zhaoyuan, Shandong province

doi: 10.12090/j.issn.1006-6616.20232910
Funds:  This research is financially supported by the 2019 Science and Technology Innovation Project of Shandong Bureau of Geology and Mineral Resources (Grant KY201916) and the 2022 Key Science and Technology Project of Shandong Bureau of Geology and Mineral Resources (Grant KY202208).
More Information
  • Received: 2023-03-10
  • Revised: 2023-04-23
  • Accepted: 2023-04-28
  • We carried out hydraulic fracturing in-situ stress measurements in an 1881-m deep borehole at the Shuiwangzhuang gold deposit and obtained the variation law of deep in-situ stress with depth in the mining area. The measurement results show that the maximum principal stress has an increasing linear trend with depth. The horizontal stress dominates the in-situ stress state within 800 m, and the vertical stress gradually transitions to the maximum principal stress with increasing depth. The maximum horizontal principal stress ranges from 11.22 to 45.69 MPa, the minimum horizontal principal stress from 7.28 to 36.17 MPa, and the vertical principal stress from 8.44 to 48.27 MPa; The direction of the maximum horizontal principal stress is NWW-trending. We analyzed the characteristics of the deep orebody’s in-situ stress according to the stress value and the direction of the maximum horizontal principal stress, which reveals that the deep in-situ stress of the Shuiwangzhuang mining area belongs to the generally low level in the Zhaoyuan–Laizhou area. We discussed the tendency of rockburst in the underground roadway during deep excavation under a high confining pressure environment based on rock mechanics parameters of drill cores, engineering rock grading standards, and elastic strain energy theory of rock bodies. The Shuiwangzhuang gold orebodies generally belong to the rockburst-free strata or strata with weak rockbursts. However, there is a strong rockburst tendency at depths such as 1102.78 m and 1379.40 m. The gold ore body is at a depth of 1680.40~1684.90 m, generally in the rockburst-free area. The above research results can provide an essential scientific basis for deep mine construction and mining design.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ALTLIP W D, LIAN Z S, 1987. Understanding and control of rockbursts: past, present and future[J]. Mining Technology, 3(8): 5-7. (in Chinese)
    [2]
    BAO Z Y, SUN Z Q, LIU G D, et al. , 2014. Geological characteristics and prospecting direction of deposits in Shuiwangzhuang Area in Potouqing fault[J]. Shandong Land and Resources, 30(2): 29-33. (in Chinese with English abstract)
    [3]
    CAI M F, 1995. The principle and techniques of in-situ stress measurement[M]. Beijing: Science Press. (in Chinese)
    [4]
    CAI M F, 2001. Optimization of mining design and control of ground pressure in metal mines-theory and practice[M]. Beijing: Science Press. (in Chinese)
    [5]
    CAI M F, GUO Q F, LI Y, et al. , 2013. In situ stress measurement and its application in the 10th Mine of Pingdingshan Coal Group[J]. Journal of University of Science and Technology Beijing, 35(11): 1399-1406. (in Chinese with English abstract)
    [6]
    CHEN Q C, SUN D S, CUI J J, et al. , 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)
    [7]
    CHEN W Z, LÜ S P, GUO X H, et al. , 2009. Research on unloading confining pressure tests and rockburst criterion based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 28(8): 1530-1540. (in Chinese with English abstract)
    [8]
    CHEN W Z, LÜ S P, GUO X H, et al. , 2010. Unloading confining pressure for brittle rock and mechanism of rock burst[J]. Chinese Journal of Geotechnical Engineering, 32(6): 963-969. (in Chinese with English abstract)
    [9]
    China Earthquake Administration, 2018. Specification of hydraulic fracturing and overcoring method for in-situ stress measurement: DB/T 14-201[S]. Beijing: Science Press. (in Chinese)
    [10]
    FEI H L, XU X H, TANG C A, 1995. Research on theory of catastrophe of rock burst in underground chamber[J]. Journal of China Coal Society, 20(1): 29-33. (in Chinese with English abstract)
    [11]
    FENG C J, CHEN Q C, WU M L, et al. , 2012. Analysis of hydraulic fracturing stress measurement data: discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract)
    [12]
    FENG X T, XIAO Y X, FENG G L, et al. , 2019. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673. (in Chinese with English abstract)
    [13]
    GUO J Q, ZHAO Q, WANG J B, et al. , 2015. Rockburst prediction based on elastic strain energy[J]. Chinese Journal of Rock Mechanics and Engineering, 34(9): 1886-1893. (in Chinese with English abstract)
    [14]
    HAIMSON B, FAIRHURST C, 1967. Initiation and extension of hydraulic fractures in rock[J]. Society of Petroleum Engineers Journal, 7(3): 310-318. doi: 10.2118/1710-PA
    [15]
    HAIMSON B C, CORNET F H, 2003. ISRM Suggested Methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    [16]
    HE M C, XIE H P, PENG S P, et al. , 2005. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2813. (in Chinese with English abstract)
    [17]
    HE M C, WANG Y, SU J S, et al. , 2018. Analysis of fractal characteristics of fragment of sandstone impact rock burst under static and dynamic coupled loads[J]. Journal of China University of Mining & Technology, 47(4): 699-705. (in Chinese with English abstract)
    [18]
    HOU K K, WU Q Z, ZHANG F P, et al. , 2022. Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress[J]. Rock and Soil Mechanics, 43(4): 1093-1102. (in Chinese with English abstract)
    [19]
    LEE J S, 1976. Geomechanical method[M]. Beijing: Science Press. (in Chinese)
    [20]
    LEEMAN E R, 1971. The CSIR “doorstopper” and triaxial rock stress measuring instruments[J]. Rock Mechanics and Rock Engineering, 3(1): 25-50.
    [21]
    LI C L, 2019. Rockburst conditions and rockburst support[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 674-682. (in Chinese with English abstract)
    [22]
    LI S X, LIU C C, AN Y H, et al. , 2007. Geology of gold deposits in Jiaodong[M]. Beijing: Geology Press. (in Chinese)
    [23]
    LIU G D, WEN G J, LIU C J, et al. , 2017. Discovery, characteristics and prospecting direction of Shuiwangzhuang deep super-large gold deposit in the northern section of Zhaoping fault[J]. Gold Science and Technology, 25(3): 38-45. (in Chinese with English abstract)
    [24]
    LIU G D, SONG G Z, BAO Z Y, et al. , 2019. New breakthrough of deep prospecting in the northern section of the Zhaoping fault zone and the new understanding of fault distribution in the Jiaodong district[J]. Geotectonica et Metallogenia, 43(2): 226-234. (in Chinese with English abstract)
    [25]
    LIU H X, TAN Z Y, WANG X, et al. , 2020. Prediction of rock burst risk in deep shaft excavation of Xincheng gold mine[J]. Journal of China University of Mining & Technology, 49(2): 296-304. (in Chinese with English abstract)
    [26]
    LIU J, HUI C, FAN J M, et al. , 2021. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31-39. (in Chinese with English abstract)
    [27]
    LIU X D, ZHOU M L, XU S H, et al. , 2022. Prospecting prediction and verification at a depth of 3000 m in the Shuiwangzhuang gold deposit, northwestern Jiaodong Peninsula, eastern China[J]. Geological Bulletin of China, 41(6): 946-957. (in Chinese with English abstract)
    [28]
    MA X M, PENG H, LI J S, et al. , 2006. In-situ stress measurement and its application to rock burst analysis in Xinbaiyanzhai tunnel of the Xiangyu railway[J]. Acta Geoscientica Sinica, 27(2): 181-186. (in Chinese with English abstract)
    [29]
    MIKHALYUK A V, ZAKHAROV V V, 1997. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks[J]. Journal of Applied Mechanics and Technical Physics, 38(2): 312-318. doi: 10.1007/BF02467918
    [30]
    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press. (in Chinese)
    [31]
    PEI F, 2020. Mechanical properties of rock in deep stratum and analysis and control of shaft surrounding rock stability in Shaling gold mine[D]. Beijing: University of Science and Technology Beijing. (in Chinese with English abstract)
    [32]
    PENG H, CUI W, MA X M, et al. , 2006. Hydrofracturing in-situ stress measurements of the water diversion area in the first stage of the South-North Water Diversion Project (western line)[J]. Journal of Geomechanics, 12(2): 182-190. (in Chinese with English abstract)
    [33]
    PENG H, MA X M, JIANG J J, et al. , 2011. Research on stress field and hydraulic fracturing in-situ stress measurement of 1 000 m deep hole in Zhaolou Coal Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 30(8): 1638-1645. (in Chinese with English abstract)
    [34]
    PENG H, SUN Y, 2016. Analysis report of hydraulic fracturing in-situ stress measurement of #2 Borehole in Ruihai Gold Mine[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese)
    [35]
    PENG H, SUN Y, 2016. Analysis report on Hydraulic fracturing in-situ stress measurement of deep exploration borehole in Jiaojia Gold Deposit, Laizhou, Shandong Province[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese)
    [36]
    PENG Z, WANG Y H, LI T J, 1996. Griffith theory and the criteria of rock burst[J]. Chinese Journal of Rock Mechanics and Engineering, 15(S1): 491-495. (in Chinese with English abstract)
    [37]
    QIAO L, CAI M F, 1995. New development of stress relief method for determination of in-situ stresses in a Gold Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 14(1): 25-32. (in Chinese with English abstract)
    [38]
    STEFFLER E D, EPSTEIN J S, CONLEY E G, 2003. Energy partitioning for a crack under remote shear and compression[J]. International Journal of Fracture, 120(4): 563-580. doi: 10.1023/A:1025511703698
    [39]
    SUJATHA V, KISHEN J M C, 2003. Energy release rate due to friction at bimaterial interface in dams[J]. Journal of Engineering Mechanics, 129(7): 793-800. doi: 10.1061/(ASCE)0733-9399(2003)129:7(793)
    [40]
    SUN D S, CHEN Q C, ZHANG Y Q, et al. , 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine[J]. Journal of Geomechanics, 26(1): 33-38. (in Chinese with English abstract)
    [41]
    SUN Y, PENG H, 2021. Analysis report on Hydraulic fracturing in-situ stress measurement of Borehole in Dayinggezhuang Gold Mine, Zhaoyuan City, Shandong Province[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese)
    [42]
    TOFEL L W, 1985. Determination of in-situ stress based on the results of visco-elastic strain recovery of oriented core and comparison with the results of hydraulic fracturing stress[J]. Seismological and Geological Science and Technology Trends, (5): 13-17.
    [43]
    WANG L J, PAN L Z, LIAO C T, et al. , 1991. In-situ stress measurement and its application in engineering[M]. Beijing: Geological Publishing House. (in Chinese)
    [44]
    WANG L J, DING Y C, LIU Q S, et al. , 1996. Rock stress measurements in a planned tunnel for diversion of water from the Yellow River[J]. Journal of Geomechanics, 2(1): 62-69. (in Chinese with English abstract)
    [45]
    XIE H P, JU Y, LI L Y, et al. , 2005a. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010. (in Chinese with English abstract)
    [46]
    XIE H P, PENG R D, JU Y, et al. , 2005b. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 24(15): 2603-2608. (in Chinese with English abstract)
    [47]
    YANG Y H, SUN D S, ZHENG X H, et al. , 2019. A method of diametrical core deformation analysis and its application on stress investigation in SK2 well[J]. Journal of Central South University (Science and Technology), 50(12): 3106-3113. (in Chinese with English abstract)
    [48]
    YU X F, ZHENG Y R, LIU H H, et al. , 1983. Stability analysis of underground cavern[M]. Beijing: China Coal Industry Publishing House. (in Chinese)
    [49]
    ZHANG G Z, JIA Z Q, FENG J, et al. , 2022. Definition for dual-index high geostress and classification standard for rock burst and large deformation in railway tunnels[J]. Journal of Railway Engineering Society, 39(8): 53-58, 65. (in Chinese with English abstract)
    [50]
    ZHANG J J, FU B J, 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27(10): 2034-2042. (in Chinese with English abstract)
    [51]
    ZHANG Y, DENG X Y, LI X H, et al. , 2022. Prediction of rockburst dangerousness based on elastic strain energy characteristics[J]. Chinese Journal of Underground Space and Engineering, 18(S1): 305-311. (in Chinese with English abstract)
    [52]
    奥特利普W D, 连志升, 1987. 对岩爆的了解与控制: 过去、现在及将来[J]. 国外采矿技术快报, 3(8): 5-7
    [53]
    鲍中义, 孙忠全, 刘国栋, 等, 2014. 破头青断裂水旺庄矿区矿床地质特征及找矿方向[J]. 山东国土资源, 30(2): 29-33.
    [54]
    蔡美峰, 1995. 地应力测量原理和技术[M]. 北京: 科学出版社.
    [55]
    蔡美峰, 2001. 金属矿山采矿设计优化与地压控制-理论与实践[M]. 北京: 科学出版社.
    [56]
    蔡美峰, 郭奇峰, 李远, 等, 2013. 平煤十矿地应力测量及其应用[J]. 北京科技大学学报, 35(11): 1399-1406.
    [57]
    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865.
    [58]
    陈卫忠, 吕森鹏, 郭小红, 等, 2009. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报, 28(8): 1530-1540.
    [59]
    陈卫忠, 吕森鹏, 郭小红, 等, 2010. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 32(6): 963-969.
    [60]
    费鸿禄, 徐小荷, 唐春安, 1995. 地下硐室岩爆的突变理论研究[J]. 煤炭学报, 20(1): 29-33.
    [61]
    丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力ps的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159.
    [62]
    冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 38(4): 649-673.
    [63]
    郭建强, 赵青, 王军保, 等, 2015. 基于弹性应变能岩爆倾向性评价方法研究[J]. 岩石力学与工程学报, 34(9): 1886-1893.
    [64]
    何满潮, 谢和平, 彭苏萍, 等, 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24(16): 2803-2813.
    [65]
    何满潮, 王炀, 苏劲松, 等, 2018. 动静组合荷载下砂岩冲击岩爆碎屑分形特征[J]. 中国矿业大学学报, 47(4): 699-705.
    [66]
    侯奎奎, 吴钦正, 张凤鹏, 等, 2022. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 43(4): 1093-1102.
    [67]
    李春林, 2019. 岩爆条件和岩爆支护[J]. 岩石力学与工程学报, 38(4): 674-682.
    [68]
    李士先, 刘长春, 安郁宏, 等, 2007. 胶东金矿地质[M]. 北京: 地质出版社.
    [69]
    李四光, 1976. 地质力学方法[M]. 北京: 科学出版社.
    [70]
    刘国栋, 温桂军, 刘彩杰, 等, 2017. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向[J]. 黄金科学技术, 25(3): 38-45.
    [71]
    刘国栋, 宋国政, 鲍中义, 等, 2019. 胶东招平断裂北段深部找矿新突破及对断裂空间展布的新认识[J]. 大地构造与成矿学, 43(2): 226-234.
    [72]
    刘焕新, 谭卓英, 王玺, 等, 2020. 新城金矿深竖井开挖岩爆危险性预测[J]. 中国矿业大学学报, 49(2): 296-304.
    [73]
    刘建, 惠晨, 樊建明, 等, 2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 27(1): 31-39.
    [74]
    刘向东, 周明岭, 徐韶辉, 等, 2022. 胶西北水旺庄金矿床3000 m深度找矿预测[J]. 地质通报, 41(6): 946-957.
    [75]
    马秀敏, 彭华, 李金锁, 等, 2006. 襄渝铁路增建二线: 新白岩寨隧道地应力测量及其在岩爆分析中的应用[J]. 地球学报, 27(2): 181-186.
    [76]
    裴峰, 2020. 纱岭金矿深部地层岩体力学性能与深竖井围岩稳定性分析及控制[D]. 北京: 北京科技大学.
    [77]
    彭华, 崔巍, 马秀敏, 等, 2006. 南水北调西线第一期工程调水区水压致裂地应力测量及其工程意义[J]. 地质力学学报, 12(2): 182-190.
    [78]
    彭华, 马秀敏, 姜景捷, 等, 2011. 赵楼煤矿1000m深孔水压致裂地应力测量及其应力场研究[J]. 岩石力学与工程学报, 30(8): 1638-1645.
    [79]
    彭华, 孙尧, 2016a. 瑞海金矿2#钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所.
    [80]
    彭华, 孙尧, 2016b. 山东省莱州市焦家金矿床深部勘探钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所.
    [81]
    彭祝, 王元汉, 李廷芥, 1996. Griffith理论与岩爆的判别准则[J]. 岩石力学与工程学报, 15(S1): 491-495.
    [82]
    乔兰, 蔡美峰, 1995. 应力解除法在某金矿地应力测量中的新进展[J]. 岩石力学与工程学报, 14(1): 25-32.
    [83]
    孙东生, 陈群策, 张延庆, 2020. ASR法在井下矿山地应力测试中的应用前景分析[J]. 地质力学学报, 26(1): 33-38. doi: 10.12090/j.issn.1006-6616.2020.26.01.003
    [84]
    孙尧, 彭华, 2021. 山东省招远市大尹格庄金矿钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所.
    [85]
    王连捷, 潘立宙, 廖椿庭, 等, 1991. 地应力测量及其在工程中的应用[M]. 北京: 地质出版社.
    [86]
    王连捷, 丁原辰, 刘琦胜, 等, 1996. 引黄隧洞地应力测量[J]. 地质力学学报, 2(1): 62-69.
    [87]
    谢和平, 鞠杨, 黎立云, 2005a. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 24(17): 3003-3010.
    [88]
    谢和平, 彭瑞东, 鞠杨, 等, 2005b. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 24(15): 2603-2608.
    [89]
    杨跃辉, 孙东生, 郑秀华, 等, 2019. 岩芯直径变形分析法及其在松科2井深部地应力调查中的应用[J]. 中南大学学报(自然科学版), 50(12): 3106-3113.
    [90]
    于学馥, 郑颖人, 刘怀恒, 等, 1983. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社.
    [91]
    张广泽, 贾哲强, 冯君, 等, 2022. 铁路隧道双指标高地应力界定及岩爆大变形分级标准[J]. 铁道工程学报, 39(8): 53-58, 65.
    [92]
    张镜剑, 傅冰骏, 2008. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
    [93]
    张勇, 邓兴洋, 李学华, 等, 2022. 基于弹性应变能特征的岩爆危险性预测研究[J]. 地下空间与工程学报, 18(S1): 305-311.
    [94]
    中国地震局, 2018. 原地应力测量水压致裂法和套芯解除法技术规范: DB/T 14—2018[S]. 北京: 中国标准出版社.
    [95]
    中华人民共和国住房和城乡建设部, 2015. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社.
  • 加载中

Catalog

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (420) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return