YANG Yongzhong, LI Zhanfei, REN Junjie, et al., 2024. Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet. Journal of Geomechanics, 30 (2): 348-362. DOI: 10.12090/j.issn.1006-6616.2023129
Citation: ZHANG B,SUN Y,MA X M,et al.,2023. Analysis of in-situ stress field characteristics and tectonic stability in the Motuo key area of the eastern Himalayan syntaxis[J]. Journal of Geomechanics,29(3):388−401 doi: 10.12090/j.issn.1006-6616.20232908

Analysis of in-situ stress field characteristics and tectonic stability in the Motuo key area of the eastern Himalayan syntaxis

doi: 10.12090/j.issn.1006-6616.20232908
Funds:  This research is financially supported by the China Geological Survey Project (Grants DD20230249, DD20221644 and DD20230014) and the Basic Research Fund of the Institute of Geomechanics, Chinese Academy of Geological Sciences (Grant DZLXS202106).
More Information
  • In order to obtain the in-situ stress field characteristics and analyze tectonic stability in the Motuo key area of the eastern Himalayan syntaxis, the in-situ stress measurement of one in-situ stress hole and 11 test sections of the Xirang section of the Motuo fault zone were carried out by the hydraulic fracturing method. The results show that the maximum and minimum horizontal principal stress values (SH, Sh) in the test section of 61.43−121.34 m are 3.05−14.50 MPa and 2.16−9.87 MPa, respectively, and the vertical principal stress values (Sv) are 1.63−3.31 MPa, namely, SH>Sh>Sv. The in-situ stress field at the measuring point is dominated by horizontal compression, and all of them belong to the in-situ stress state of reverse fault. The principal stress values gradually increase with the increase of depth, and the dominant direction of the maximum principal stress is NEE. In the whole range of in-situ stress depth, the lateral pressure coefficients (Kav) are 1.39−4.38, the maximum horizontal stress coefficients (KHv) are greater than 1, and the ratio increases with the increase of depth. The regional stress field of this key area is dominated by horizontal stress and it is highly directional. The horizontal stress coefficients (KHh) of all test sections are 1.23−1.66, which are similar to the calculation results of in-situ stress characteristic parameters in Linzhi−Tongmai section. The horizontal tectonic stress of the shallow level at 98 m is relatively small, and the stress accumulation level is low. The friction coefficient required to maintain fault stability is smaller than the critical friction coefficient of actual fault, and the tectonic environment is relatively stable. When the depth exceeds 98 m, the friction coefficient required to maintain fault stability is close to the critical friction coefficient value of the actual fault due to the dominant role of horizontal tectonic stress, and there is a small risk of fault instability slip. The superposition of the Coulomb stress change in the sinistral strike-slip direction and the thrust direction caused by the strong regional earthquakes on the fault plane of the Motuo fault zone in the study area are all negative numbers, which inhibits fault slip and does not increase the risk of fault activity in the study area.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    CHANG L J, FLESCH L M, WANG C Y, et al. , 2015. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data[J]. Geophysical Research Letters, 42(14): 5813-5819. doi: 10.1002/2015GL064568
    [2]
    CHEN Q C, SUN D S, CUI J J, et al. , 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)
    [3]
    DONG H W, XU Z Q, CAO H, et al. , 2018. Comparison of eastern and western boundary faults of eastern Himalayan syntaxis, and its tectonic evolution[J]. Earth Science, 43(4): 933-951. (in Chinese with English abstract)
    [4]
    EVANS K, ENGELDER T, 1989. Some problems in estimating horizontal stress magnitudes in "thrust" regimes[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6): 647-660.
    [5]
    FENG C J, ZHANG P, MENG J, et al. , 2017. In situ stress measurement at deep boreholes along the Tanlu fault zone and its seismologicaland geological significance[J]. Progress in Geophysics, 32(3): 946-967. (in Chinese with English abstract)
    [6]
    FENG C J, LI B, LI H, et al. , 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonicstability[J]. Journal of Geomechanics, 28(6): 919-937. (in Chinese with English abstract)
    [7]
    GUO C B, WU R A, JIANG L W, et al. , 2021. Typical geohazards and engineering geological problems along the Ya'an-Linzhi section of the Sichuan-Tibet railway, China[J]. Geoscience, 35(1): 1-17. (in Chinese with English abstract)
    [8]
    HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation-part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    [9]
    HARRIS R A, 1998. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 24347-24358. doi: 10.1029/98JB01576
    [10]
    HARRIS R A, SIMPSON RW, 1992. Changes in static stress on southern California faults after the 1992 Landers earthquake[J]. Nature, 360(6401): 251-254. doi: 10.1038/360251a0
    [11]
    HUANG C Y, CHANG L J, DING Z F, 2021. Crustal anisotropy in the eastern Himalayan syntaxis and adjacent areas[J]. Chinese Journal of Geophysics, 64(11): 3970-3982. (in Chinese with English abstract)
    [12]
    HUANG Y D, YAO L K, TAN L, et al. , 2020. Engineering effect of the Himalayan orogen and engineering geological zoning of China-Nepal railway[J]. Journal of Engineering Geology, 28(2): 421-430. (in Chinese with English abstract)
    [13]
    HUANGY D, PAN Q, YAO L K, et al. , 2021. Characteristics of measured stress and route selection strategy under high in-situ stress risk controlalong Lalin section of Sichuan-Tibet Railway[J]. Journal of Engineering Geology, 29(2): 375-382. (in Chinese with English abstract)
    [14]
    JAEGER J C, COOK N G W, ZIMMERMAN R, 2009. Fundamentals of rock mechanics[M]. Hoboken: John Wiley & Sons.
    [15]
    KING G C P, STEIN R S, LIN J, 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953.
    [16]
    LEE M Y, HAIMSON B C, 1989. Statistical evaluation of hydraulic fracturing stress measurement parameters[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6): 447-456.
    [17]
    LIN W R, SAITO S, SANADA Y, et al. , 2011. Principal horizontal stress orientations prior to the 2011 MW9.0 Tohoku-Oki, Japan, earthquake in its source area[J]. Geophysical Research Letters, 38(7): L00G10.
    [18]
    LIN W R, CONIN M, MOORE J C, et al. , 2013. Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake[J]. Science, 339(6120): 687-690. doi: 10.1126/science.1229379
    [19]
    MCGARR A, ZOBACK M D, HANKS T C, 1982. Implications of an elastic analysis of in situ stress measurements near the San Andreas fault[J]. Journal of Geophysical Research: Solid Earth, 87(B9): 7797-7806. doi: 10.1029/JB087iB09p07797
    [20]
    QIN X H, ZHANG P, FENG C J, et al. , 2014. In-situ stress measurements and slip stability of major faults in Beijing region, China[J]. Chinese Journal of Geophysics, 57(7): 2165-2180,doi: 10.6038/cjg20140712. (in Chinese with English abstract)
    [21]
    STEIN R S, KINGG C P, LIN J, 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 landers earthquake[J]. Science, 258(5086): 1328-1332. doi: 10.1126/science.258.5086.1328
    [22]
    STOCK J M, HEALY J H, HICKMAN S H, et al. , 1985. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field[J]. Journal of Geophysical Research: Solid Earth, 90(B10): 8691-8706. doi: 10.1029/JB090iB10p08691
    [23]
    TODA S, STEIN R S, SEVILGEN V, et al. , 2011. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide[R]. US Geological Survey Open-File Report, 2011-1060: 63.
    [24]
    WAN Y G, 2010. Contemporary tectonic stress field in China[J]. Earthquake Science, 23(4): 377-386. doi: 10.1007/s11589-010-0735-5
    [25]
    WANG B, QIN X H, CHEN Q C, et al. , 2020. Measurement results of in-situ stress in Guyuan area of Ningxia on the southwest margin of Ordos block and its causation analysis[J]. Geological Bulletin of China, 39(7): 983-994. (in Chinese with English abstract)
    [26]
    WANG C H, GAO G Y, YANG S X, et al. , 2019. Analysis and prediction of stress fields of Sichuan-Tibet railway area based on contemporary tectonic stress field zoning in Western China[J]. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242-2253. (in Chinese with English abstract)
    [27]
    WANG C H, GAO G Y, WANG H, et al. , 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2): 167-174. (in Chinese with English abstract)
    [28]
    WANG K Y, CHANG L J, DING Z F, 2021. Upper crustal anisotropy in the eastern Himalayan syntaxis[J]. Acta Seismologica Sinica, 43(2): 168-179. (in Chinese with English abstract)
    [29]
    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002.
    [30]
    XIE C, YANG X P, HUANG X N, et al. , 2016. Geological evidences of late quaternary activity of Motuo fault in eastern Himalayan syntaxis[J]. Seismology and Geology, 38(4): 1095-1106. (in Chinese with English abstract)
    [31]
    XU J R, ZHAO Z X, 2006. Characteristics of the regional stress field and tectonic movement on the Qinghai-Tibet Plateau and in its surrounding areas[J]. Geology in China, 33(2): 275-285. (in Chinese with English abstract)
    [32]
    XU Z H, 2001. A present-day tectonic stress map for eastern Asia region[J]. Acta Seismologica Sinica, 23(5): 492-501. (in Chinese with English abstract)
    [33]
    YAN J, HE C, JIANG B, et al. , 2019. Inoculation and characters of rockbursts in extra-long and deep-lying tunnels located on Yarlung Zangbo suture[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769-781. (in Chinese with English abstract)
    [34]
    ZHANG C Y, DU S H, HE M C, et al. , 2022. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 41(5): 954-968. (in Chinese with English abstract)
    [35]
    ZHANG H, SHI G, WU H, et al. , 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594. (in Chinese with English abstract)
    [36]
    ZOBACK M D, HICKMAN S, 1982. In situ study of the physical mechanisms controlling induced seismicity at Monticello Reservoir, South Carolina[J]. Journal of Geophysical Research: Solid Earth, 87(B8): 6959-6974. doi: 10.1029/JB087iB08p06959
    [37]
    ZOBACK M D, HEALY J H, 1992. In situ stress measurements to 3.5 km depth in the Cajon Pass Scientific Research Borehole: Implicationsfor the mechanics of crustal faulting[J]. Journal of Geophysical Research: Solid Earth, 97(B4): 5039-5057. doi: 10.1029/91JB02175
    [38]
    ZOBACK M D, TOWNEND J, 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 336(1-4): 19-30. doi: 10.1016/S0040-1951(01)00091-9
    [39]
    ZOBACK M D, 2007. Reservoir geomechanics[M]. New York: Cambridge University Press.
    [40]
    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865.
    [41]
    董汉文, 许志琴, 曹汇, 等, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程[J]. 地球科学, 43(4): 933-951.
    [42]
    丰成君, 张鹏, 孟静, 等, 2017. 郯庐断裂带及邻区深孔地应力测量与地震地质意义[J]. 地球物理学进展, 32(3): 946-967.
    [43]
    丰成君, 李滨, 李惠, 等, 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨[J]. 地质力学学报, 28(6): 919-937.
    [44]
    郭长宝, 吴瑞安, 蒋良文, 等, 2021. 川藏铁路雅安-林芝段典型地质灾害与工程地质问题[J]. 现代地质, 35(1): 1-17.
    [45]
    黄臣宇, 常利军, 丁志峰, 2021. 喜马拉雅东构造结及周边地区地壳各向异性特征[J]. 地球物理学报, 64(11): 3970-3982.
    [46]
    黄艺丹, 姚令侃, 谭礼, 等, 2020. 喜马拉雅造山带工程效应及中尼铁路工程地质分区[J]. 工程地质学报, 28(2): 421-430.
    [47]
    黄艺丹, 潘前, 姚令侃, 等, 2021. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略[J]. 工程地质学报, 29(2): 375-382.
    [48]
    秦向辉, 张鹏, 丰成君, 等, 2014. 北京地区地应力测量与主要断裂稳定性分析[J]. 地球物理学报, 57(7): 2165-2180,doi: 10.6038/cjg20140712.
    [49]
    王斌, 秦向辉, 陈群策, 等, 2020. 鄂尔多斯地块西南缘宁夏固原地区原位地应力测量结果及其成因[J]. 地质通报, 39(7): 983-994.
    [50]
    王成虎, 高桂云, 杨树新, 等, 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估[J]. 岩石力学与工程学报, 38(11): 2242-2253.
    [51]
    王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167-174.
    [52]
    王凯悦, 常利军, 丁志峰, 2021. 喜马拉雅东构造结上地壳各向异性特征[J]. 地震学报, 43(2): 168-179.
    [53]
    谢超, 杨晓平, 黄雄南, 等, 2016. 东喜马拉雅构造结墨脱断裂晚第四纪活动地质证据的发现[J]. 地震地质, 38(4): 1095-1106.
    [54]
    徐纪人, 赵志新, 2006. 青藏高原及其周围地区区域应力场与构造运动特征[J]. 中国地质, 33(2): 275-285.
    [55]
    许忠淮, 2001. 东亚地区现今构造应力图的编制[J]. 地震学报, 23(5): 492-501.
    [56]
    严健, 何川, 汪波, 等, 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征[J]. 岩石力学与工程学报, 38(4): 769-781.
    [57]
    张重远, 杜世回, 何满潮, 等, 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 41(5): 954-968.
    [58]
    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594.
  • Relative Articles

    WANG Chenxu, LI Xi. 2025: Tectonic characteristics and numerical simulation analysis of an arcuate structural belt:A case study of the middle and southern segments of the Red River fault. Journal of Geomechanics, 31(1): 39-60. doi: 10.12090/j.issn.1006-6616.2024042
    YANG Zhen, ZHONG Ning, ZHANG Xianbing, YU Hao, GUO Changbao, LI Haibing. 2025: Avoidance distance and influence range of active faults: A case study of Litang fault. Journal of Geomechanics, 31(1): 124-138. doi: 10.12090/j.issn.1006-6616.2023085
    YANG Xiaoping, CHEN Jie, LI An, HUANG Weiliang, ZHANG Ling, YANG Haibo, HU Zongkai, ZUO Yuqi. 2024: Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic. Journal of Geomechanics, 30(2): 225-241. doi: 10.12090/j.issn.1006-6616.2023136
    CHEN Shuping, WAN Huachuan, YUAN Haowei, WANG Xinpeng, HUANG Xueyao. 2022: Deformation asymmetry in foreland thrust belts and the kinematic direction of the related thrust faults. Journal of Geomechanics, 28(2): 182-190. doi: 10.12090/j.issn.1006-6616.2021080
    HU Jianmin, WANG Wei, ZHAO Yue, LIU Xiaochun, CHEN Hong, DONG Xiaopeng. 2021: Sequence and tectonic deformation process of metamorphic complex in the Larsemann Hills, East Antarctica. Journal of Geomechanics, 27(5): 719-735. doi: 10.12090/j.issn.1006-6616.2021.27.05.059
    LIANG Mingliang, WANG Zongxiu, LI Chunlin, LI Huijun, ZHANG Linyan, FENG Xingqiang, ZHANG Kaixun. 2020: Effect of structural deformation on permeability evolution of marine shale reservoirs. Journal of Geomechanics, 26(6): 840-851. doi: 10.12090/j.issn.1006-6616.2020.26.06.066
    WANG Miaomiao, FENG Chengjun, QI Bangshen, MENG Jing, ZHANG Peng, REN Siqi, TAN Chengxuan. 2018: REAEARCH ON THE MECHANISM OF THE INFLUENCE OF DYNAMIC LOAD OF HIGH-SPEED TRAIN ON LAND SUBSIDENCE SUBJECTED TO FAULT EFFECT: A CASE STUDY OF THE HUAILAI SECTION OF THE BEIJING-ZHANGJIAKOU HIGH-SPEED RAILWAY. Journal of Geomechanics, 24(3): 407-415. doi: 10.12090/j.issn.1006-6616.2018.24.03.042
    QI Xin, SHAO Chang-sheng, CHEN Zhou-feng, CHEN Li-de. 2016: RESEARCH ON DETECTION AND ACTIVITY OF THE HENGGANG BRICKYARD FAULT IN RUICHANG CITY, JIANGXI PROVINCE. Journal of Geomechanics, 22(3): 594-601.
    CHEN Qi-guang, SHAO Zhao-gang, HAN Jian-en, MENG Xian-gang, YU Jia, WANG Jin. 2014: ANALYSIS OF GEOMORPHOLOGIC CHARACTERISTICS OF THE YAMZHO YUMCO REGION BASED ON ASTER-GDEM. Journal of Geomechanics, 20(3): 304-316.
    CUI Min, CAI Jia. 2014: AUTOMATIC FINITE STRAIN DETERMINATION OF QUARTZ SANDSTONE IN WEAK STRUCTURAL DEFORMATION REGION. Journal of Geomechanics, 20(2): 159-164.
    LI Ya-hui, DUAN Hong-liang, TAN Ying. 2010: STRUCTURAL DIVISION OF MARINE MESOZOIC-PALEOZOIC IN LOWER YANGTZE REGION AND ITS SIGNIFICANCE FOR PETROLEUM EXPLORATION TARGETS. Journal of Geomechanics, 16(3): 271-280.
    LI Li, JIANG Rong-bao, QI Wan-xiu, WU Yi-ping, YANG Yi, LI Xue-zhi, CHEN Zheng-le, CHEN Xuan-hua, WANG Xiao-feng, REN Xiao-juan. 2008: MAGNETIC FABRICS OF CENOZOIC SEDIMENTARY ROCKS IN THE WESTERN QAIDAM BASIN AND THEIR STRUCTURAL SIGNIFICANCE. Journal of Geomechanics, 14(1): 45-56.
    MA Bao-qi, LI De-wen. 2008: STAGES OF THE NEOTECTONIC MOVEMENT OF THE MENYUAN BASIN IN THE MIDDLE SEGMENT OF THE QILIAN MOUNTAINS. Journal of Geomechanics, 14(3): 201-211.
    MA De-ming, CHEN Jiang-li, ZENG Chang-min, SHANG Xin-lu, SHI Jun, ZHANG Xian-jun, JING Bing. 2007: STRUCTURAL DEFORMATION CHARACTERISTICS OF THE KALPIN THRUST BELT ON THE NORTHWESTERN MARGIN OF THE TARIM BASIN. Journal of Geomechanics, 13(4): 340-347.
    CAO Chen-jie, WANG Xiao-feng. 2005: GENETIC MECHANISM OF NEARLY N-S-TRENDING STRUCTURE IN THE QAIDAM BASIN AND THEIR SIGNIFICANCE FOR FORMATION OF HYDROCARBON ACCUMULATIONS. Journal of Geomechanics, 11(1): 74-80.
    ZHOU Xin-gui, SUN Bao-shan, XU Hong-jie, DUAN Tie-jun, SHE Xiao-yu. 2001: TECTONIC DEFORMATION OF YAKERLA-LUNTAI REGION IN NORTH TARIM BASIN AND ITS CONTROL ON OIL/GAS ACCUMULATION. Journal of Geomechanics, 7(1): 33-40.
    LI Long, GAO De-zhen, ZHANG Wei-jie, GENG Ming-shan, WANG Tao. 2000: DEFORMATION OF ARCHAEAN WULASHAN GROUP IN GUYANG REGION OF INNER MONGOLIA. Journal of Geomechanics, 6(4): 67-72.
    WANG Lian-jie, CUI Jun-wen, WANG Wei. 1999: TECTONIC DEFORMATION AND THERMAL STRESS FIELD IN QINGHAI-TIBET PLATEAU. Journal of Geomechanics, 5(3): 1-7.
    Li Youli, Yang Jingchun, Li Baojun, Tan Lihua. 1997: ON THE TECTONIC LANDFORM OF THE YUMU MOUNTAIN, HEXI CORRIDOR,GANSU PROVINCE. Journal of Geomechanics, 3(4): 20-26.
    Zhang Shukun, Sun Jiashu, Wang Xihai, Feng Yanwei. 1996: SER DATING OF THE F1 AND F7 FAULTS IN THE ZHANGHEWAN RESERVOIR DISTRICT, HEBEI. Journal of Geomechanics, 2(2): 94-96.
  • Cited by

    Periodical cited type(1)

    1. 吴中海,郑文俊,任俊杰,任治坤. 活动构造与强震:专辑序言. 地质力学学报. 2024(02): 181-188 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.0 %FULLTEXT: 16.0 %META: 71.8 %META: 71.8 %PDF: 12.3 %PDF: 12.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %其他: 0.2 %其他: 0.2 %China: 0.2 %China: 0.2 %上海: 0.5 %上海: 0.5 %东营: 0.2 %东营: 0.2 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %兰州: 0.5 %兰州: 0.5 %内江: 0.3 %内江: 0.3 %北京: 9.7 %北京: 9.7 %十堰: 0.2 %十堰: 0.2 %厦门: 0.2 %厦门: 0.2 %合肥: 0.3 %合肥: 0.3 %咸阳: 0.3 %咸阳: 0.3 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大同: 12.3 %大同: 12.3 %天津: 0.8 %天津: 0.8 %孟买: 0.5 %孟买: 0.5 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.2 %广州: 0.2 %延安: 0.2 %延安: 0.2 %张家口: 4.0 %张家口: 4.0 %张掖: 0.2 %张掖: 0.2 %成都: 2.3 %成都: 2.3 %扬州: 0.6 %扬州: 0.6 %昆明: 1.1 %昆明: 1.1 %晋中: 0.2 %晋中: 0.2 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.6 %杭州: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.2 %桂林: 0.2 %榆林: 1.9 %榆林: 1.9 %武汉: 1.1 %武汉: 1.1 %沃金: 0.5 %沃金: 0.5 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 1.0 %洛阳: 1.0 %海北: 0.2 %海北: 0.2 %温州: 0.5 %温州: 0.5 %漯河: 3.4 %漯河: 3.4 %潍坊: 0.2 %潍坊: 0.2 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.2 %烟台: 0.2 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 0.5 %石家庄: 0.5 %纽约: 0.8 %纽约: 0.8 %芒廷维尤: 24.5 %芒廷维尤: 24.5 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %萍乡: 0.2 %萍乡: 0.2 %衡水: 0.2 %衡水: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 8.9 %西宁: 8.9 %西安: 0.6 %西安: 0.6 %诺沃克: 1.1 %诺沃克: 1.1 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.3 %运城: 1.3 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.5 %郑州: 0.5 %酒泉: 0.2 %酒泉: 0.2 %重庆: 0.2 %重庆: 0.2 %银川: 0.2 %银川: 0.2 %长沙: 2.1 %长沙: 2.1 %阳泉: 0.6 %阳泉: 0.6 %青岛: 0.5 %青岛: 0.5 %香港: 0.3 %香港: 0.3 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他China上海东营乌鲁木齐兰州内江北京十堰厦门合肥咸阳哥伦布嘉兴大同天津孟买安康宣城常州常德广州延安张家口张掖成都扬州昆明晋中朝阳杭州格兰特县桂林榆林武汉沃金沈阳洛阳海北温州漯河潍坊濮阳烟台盘锦石家庄纽约芒廷维尤芝加哥苏州萍乡衡水衢州西宁西安诺沃克贵阳运城遵义邯郸郑州酒泉重庆银川长沙阳泉青岛香港齐齐哈尔

Catalog

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (897) PDF downloads(163) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return