CHEN D S,JI H G,YUAN Y Z,et al.,2023. Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method[J]. Journal of Geomechanics,29(3):365−374 doi: 10.12090/j.issn.1006-6616.20232906
Citation: CHEN D S,JI H G,YUAN Y Z,et al.,2023. Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method[J]. Journal of Geomechanics,29(3):365−374 doi: 10.12090/j.issn.1006-6616.20232906

Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method

doi: 10.12090/j.issn.1006-6616.20232906
Funds:  This research is financially supported by the Major Scientific and Technological Innovation Projects of Shandong Province, China (Grants 2019SDZY02 and 2019SDYZ05)
More Information
  • Accurate in-situ crustal stress data are essential for excavation support design and long-term stability analysis of underground projects. We tested the main shaft of the Shaling Gold Mine for crustal stress using hydraulic fracturing technology, and the crustal stress state of 20 measurement points was obtained. The Brazilian test, uniaxial compression test, and acoustic emission test of the cores were conducted indoors to obtain the rock’s spatial inhomogeneity and strength distribution. We analyzed the relationship between the inhomogeneity of the rock and the hydraulic fracturing results. The analysis results show that the magnitude of the principal stress increases nearly linearly with the measurement depth, with the maximum horizontal principal stress value ranging from 20.78 to 45.2 MPa and the minimum principal stress value from 14.94 to 35.33 MPa. The average direction of the maximum horizontal principal stress is NW 65°. The inhomogeneity of each layer of the cores varies, and the inhomogeneity coefficient of the metagabbro is from 0.1 to 0.3. The number of acoustic emission signals under each intensity of the rock is basically the same, and the dispersion of the rock is small. The non-homogeneity coefficient of granite is up to 1.0, dominated by the acoustic emission signals generated by the intense-phase rupture at the late loading stage. The non-homogeneity of the rock affects the direction of expansion of the hydraulic fracture, and the angle φ between the expansion direction and the maximum horizontal principal stress affects the measurement results of the horizontal maximum and minimum principal stresses and has a more significant effect on the horizontal minimum principal stress. The relationship between hydraulic fracture measurements and rock properties was analyzed, which is helpful for accurately detecting the distribution of stress fields in inhomogeneous strata.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    BAO L H, DU Y, GUO Q L, et al. , 2017. In-situ stress measurement and research on tectonic stress field distribution law of Chengdu-Lanzhou railway[J]. Journal of Geomechanics, 23(5): 734-742. (in Chinese with English abstract)
    [2]
    BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
    [3]
    CAI M, QIAO L, YU J, 1995. Study and tests of techniques for increasing overcoring stress measurement accuracy[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(4): 375-384.
    [4]
    CAI M, KAISER P K, TASAKA Y, et al. , 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 41(5): 833-847. doi: 10.1016/j.ijrmms.2004.02.001
    [5]
    CAI M F, LIU W D, LI Y, 2010. In-situ stress measurement at deep position of Linglong gold mine and distribution law of in-situ stress field in mine area[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2): 227-233. (in Chinese with English abstract)
    [6]
    CAI M F, JI D, GUO Q F, 2013a. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 32(10): 1973-1980. (in Chinese with English abstract)
    [7]
    CAI M F, GUO Q F, LI Y, et al. , 2013b. In situ stress measurement and its application in the 10th Mine of Pingdingshan Coal Group[J]. Journal of University of Science and Technology Beijing, 35(11): 1399-1406. (in Chinese with English abstract)
    [8]
    CHEN J L, 2019. Numerical simulation methods and experimental investigation of the hydraulic fracturing of heterogeneous Glutenites[D]. Beijing: China University of Mining & Technology (Beijing). (in Chinese with English abstract)
    [9]
    CHEN N, WANG C H, GAO G Y, et al. , 2021. Characteristics of in-situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376-3384. (in Chinese with English abstract)
    [10]
    CHEN Y Q, NAGAYA Y, ISHIDA T, 2015. Observations of fractures induced by hydraulic fracturing in anisotropic granite[J]. Rock Mechanics and Rock Engineering, 48(4): 1455-1461. doi: 10.1007/s00603-015-0727-9
    [11]
    GOODMAN R E, 1963. Subaudible noise during compression of rocks[J]. GSA Bulletin, 74(4): 487-490. doi: 10.1130/0016-7606(1963)74[487:SNDCOR]2.0.CO;2
    [12]
    HOU K K, WU Q Z, ZHANG F P, et al. , 2022. Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress[J]. Rock and Soil Mechanics, 43(4): 1093-1102. (in Chinese with English abstract)
    [13]
    HUBBERT M K, WILLIS D G, 1957. Mechanics of hydraulic fracturing[J]. Petroleum Transactions, 210(1): 153-168.
    [14]
    JIANG M Y, 2019. Metallogeneses and tectonic setting analysis of Shaling gold deposit in Jiaodong[D]. Hebei GEO University. (in Chinese with English abstract)
    [15]
    LEE H, ONG S H, 2018. Estimation of in situ stresses with hydro-fracturing tests and a statistical method[J]. Rock Mechanics and Rock Engineering, 51(3): 779-799. doi: 10.1007/s00603-017-1349-1
    [16]
    LEEMAN E R, HAYES D J, 1966. A technique for determining the complete state of stress in rock using a single borehole[C]//Proceedings 1st congress international society of rock mechanics. Lisbon: 17-24.
    [17]
    LI B, ZHANG W, WEN R, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: engineering geological significance[J]. Journal of Geomechanics, 28(2): 191-202. (in Chinese with English abstract)
    [18]
    LIU J, HUI C, FAN J M, et al. , 2021. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31-39. (in Chinese with English abstract)
    [19]
    LIU Y D, LIN J, FENG Y J, et al. , 2018. Research on tensile strength of rock based on hydraulic fracturing method[J]. Rock and Soil Mechanics, 39(5): 1781-1788. (in Chinese with English abstract)
    [20]
    LJUNGGREN C, CHANG Y T, JANSON T, et al. , 2003. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 975-989. doi: 10.1016/j.ijrmms.2003.07.003
    [21]
    MENG X B, XU Y D, ZHANG Y J, et al. , 2019. Study on the variation law of crustal stress field in tight reservoir under multi field coupling[J]. Journal of Geomechanics, 25(4): 467-474. (in Chinese with English abstract)
    [22]
    QIN X H, CHEN Q C, ZHAO X G, et al. , 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements[J]. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189-1202. (in Chinese with English abstract)
    [23]
    QIU Y C, LIANG W G, LI J, et al. , 2022. Study on fracture morphology of hydraulic fracturing in heterogeneous elastoplastic coal[J]. Journal of China Coal Society, 47(10): 3668-3679. (in Chinese with English abstract)
    [24]
    REN Y, WANG D, LI T B, et al. , 2021. In-situ geostress characteristics and engineering effect in Ya’an—Xinduqiao section of Sichuan—Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 40(1): 65-76. (in Chinese with English abstract)
    [25]
    SU X B, JI H G, QUAN D L, et al. , 2020. Relationship between spatial variability of rock strain and b value under splitting condition[J]. Journal of China Coal Society, 45(S1): 239-246. (in Chinese with English abstract)
    [26]
    TEUFEL L W, 1983. Determination of in-situ stress from anelastic strain recovery measurements of oriented core[C]//Symposium on low permeability gas reservoirs. Denver, Colorado: 421-430.
    [27]
    WANG L J, SUN D S, LIN W R, et al. , 2012. Anelastic strain recovery method to determine in-situ stress and application example[J]. Chinese Journal of Geophysics, 55(5): 1674-1681. (in Chinese with English abstract)
    [28]
    WU J W, ZHANG W Y, PENG H, et al. , 2021. In-situ stress measurement by hydraulic fracturing method around Panji coal mine exploration area in Huainan coalfield[J]. Journal of Engineering Geology, 29(4): 972-984. (in Chinese with English abstract)
    [29]
    YANG T H, TAN G H, TANG C A, et al. , 2002. Influence of heterogeneity on hydraulic fracturing in rocks[J]. Chinese Journal of Geotechnical Engineering, 24(6): 724-728. (in Chinese with English abstract)
    [30]
    ZHANG C Y, DU S H, HE M C, et al. , 2022. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 41(5): 954-968. (in Chinese with English abstract)
    [31]
    ZHANG H, SHI G, WU H, et al. , 2020. In-situ stress measurement in the shallow basement of the shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594. (in Chinese with English abstract)
    [32]
    ZHANG T Z, JI H G, SU X B, et al. , 2022. Evaluation and classification of rock heterogeneity based on acoustic emission detection[J]. International Journal of Minerals, Metallurgy and Materials, 29(12): 2117-2125. doi: 10.1007/s12613-021-2381-4
    [33]
    ZHANG Z X, 2002. An empirical relation between mode I fracture toughness and the tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 39(3): 401-406. doi: 10.1016/S1365-1609(02)00032-1
    [34]
    ZHAO X G, WANG J, MA L K, et al. , 2014. Distribution characteristics of geostress field in Xinchang rock block of candidate Beishan area for high level radioactive waste repository in China[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S2): 3750-3759. (in Chinese with English abstract)
    [35]
    ZHUANG L, ZANG A, JUNG S, 2022. Grain-scale analysis of fracture paths from high-cycle hydraulic fatigue experiments in granites and sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 157: 105177. doi: 10.1016/j.ijrmms.2022.105177
    [36]
    包林海, 杜义, 郭啟良, 等, 2017. 成兰铁路地应力测量与构造应力场分布规律研究[J]. 地质力学学报, 23(5): 734-742. doi: 10.3969/j.issn.1006-6616.2017.05.010
    [37]
    蔡美峰, 刘卫东, 李远, 2010. 玲珑金矿深部地应力测量及矿区地应力场分布规律[J]. 岩石力学与工程学报, 29(2): 227-233.
    [38]
    蔡美峰, 冀东, 郭奇峰, 2013a. 基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J]. 岩石力学与工程学报, 32(10): 1973-1980.
    [39]
    蔡美峰, 郭奇峰, 李远, 等, 2013b. 平煤十矿地应力测量及其应用[J]. 北京科技大学学报, 35(11): 1399-1406. doi: 10.13374/j.issn1001-053x.2013.11.003
    [40]
    陈佳亮, 2019. 非均质砂砾岩水压致裂的数值模拟方法与实验研究[D]. 北京: 中国矿业大学(北京).
    [41]
    陈念, 王成虎, 高桂云, 等, 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376-3384. doi: 10.16285/j.rsm.2021.0380
    [42]
    侯奎奎, 吴钦正, 张凤鹏, 等, 2022. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 43(4): 1093-1102.
    [43]
    姜梦瑶, 2019. 胶东纱岭金矿床成矿机制及构造背景分析[D]. 河北地质大学.
    [44]
    李彬, 张文, 文冉, 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析[J]. 地质力学学报, 28(2): 191-202.
    [45]
    刘建, 惠晨, 樊建明, 等, 2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 27(1): 31-39.
    [46]
    刘跃东, 林健, 冯彦军, 等, 2018. 基于水压致裂法的岩石抗拉强度研究[J]. 岩土力学, 39(5): 1781-1788.
    [47]
    孟宪波, 徐佑德, 张曰静, 等, 2019. 多场耦合作用下致密储层地应力场变化规律研究: 以准噶尔盆地某区为例[J]. 地质力学学报, 25(4): 467-474. doi: 10.12090/j.issn.1006-6616.2019.25.04.044
    [48]
    秦向辉, 陈群策, 赵星光, 等, 2020. 水压致裂地应力测量中系统柔度影响试验研究[J]. 岩石力学与工程学报, 39(6): 1189-1202. doi: 10.13722/j.cnki.jrme.2019.1204
    [49]
    邱宇超, 梁卫国, 李静, 等, 2022. 非均质弹塑性煤体水压致裂裂纹形态研究[J]. 煤炭学报, 47(10): 3668-3679. doi: 10.13225/j.cnki.jccs.2021.1684
    [50]
    任洋, 王栋, 李天斌, 等, 2021. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报, 40(1): 65-76. doi: 10.13722/j.cnki.jrme.2020.0537
    [51]
    苏晓波, 纪洪广, 权道路, 等, 2020. 劈裂条件下岩石应变空间变异性与b值关系[J]. 煤炭学报, 45(S1): 239-246.
    [52]
    王连捷, 孙东生, 林为人, 等, 2012. 地应力测量的非弹性应变恢复法及应用实例[J]. 地球物理学报, 55(5): 1674-1681. doi: 10.6038/j.issn.0001-5733.2012.05.024
    [53]
    吴基文, 张文永, 彭华, 等, 2021. 淮南煤田潘集煤矿外围勘查区水压致裂地应力测量研究[J]. 工程地质学报, 29(4): 972-984. doi: 10.13544/j.cnki.jeg.2021-0302
    [54]
    杨天鸿, 谭国焕, 唐春安, 等, 2002. 非均匀性对岩石水压致裂过程的影响[J]. 岩土工程学报, 24(6): 724-728. doi: 10.3321/j.issn:1000-4548.2002.06.011
    [55]
    张重远, 杜世回, 何满潮, 等, 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 41(5): 954-968.
    [56]
    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594. doi: 10.12090/j.issn.1006-6616.2020.26.04.051
    [57]
    赵星光, 王驹, 马利科, 等, 2014. 高放废物地质处置库北山预选区新场岩体地应力场分布规律[J]. 岩石力学与工程学报, 33(S2): 3750-3759. doi: 10.13722/j.cnki.jrme.2014.s2.044
  • Relative Articles

    2025: Characteristics of in-situ stresses and engineering stability analysis on the south section of the cross-Bohai Strait passage project. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2023169
    LI Zhengzheng, YANG Wenchao, ZHANG Peng, LI Changhu, FAN Yulu. 2023: In-situ stress measurement and inversion analysis of a large hydropower project in southeast Tibet. Journal of Geomechanics, 29(3): 442-452. doi: 10.12090/j.issn.1006-6616.20232912
    BAI Jinpeng, DONG Yan’an, GAN Jun, ZHAO Xiaoyang, LI Hongli, CHAI Bao. 2023: In-situ stress state in critical areas of the Taiyuan pumped storage power station and its application in pivot project layout. Journal of Geomechanics, 29(3): 375-387. doi: 10.12090/j.issn.1006-6616.20232907
    ZHU Mingde, WANG Zhaoya, ZHANG Yuezheng, LI Wenguang, HOU Kuikui, JI Hongguang, YIN Yantian, FU Zhen, HAO Yingjie. 2023: In-situ stress measurement and inversion analysis of the deep shaft project area in Sanshan Island based on hydraulic fracturing method. Journal of Geomechanics, 29(3): 430-441. doi: 10.12090/j.issn.1006-6616.20232911
    LI Bin, ZHANG Wen, WEN Ran. 2022: Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi:Engineering geological significance. Journal of Geomechanics, 28(2): 191-202. doi: 10.12090/j.issn.1006-6616.2021053
    MENG Wen, TIAN Tao, SUN Dongsheng, YANG Yuehui, LI Ran, CHEN Qunce. 2022: Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model. Journal of Geomechanics, 28(4): 537-549. doi: 10.12090/j.issn.1006-6616.2022041
    WANG Chenghu, GAO Guiyun, WANG Hong, WANG Pu. 2020: Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests. Journal of Geomechanics, 26(2): 167-174. doi: 10.12090/j.issn.1006-6616.2020.26.02.016
    ZHANG Hao, SHI Gang, WU Hong, SHAO Lei, WANG Qian. 2020: In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance. Journal of Geomechanics, 26(4): 583-594. doi: 10.12090/j.issn.1006-6616.2020.26.04.051
    CHEN Qunce, SUN Dongsheng, CUI Jianjun, QIN Xianghui, ZHANG Chongyuan, MENG Wen, LI Awei, YANG Yuehui. 2019: HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE. Journal of Geomechanics, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
    CHEN Li-zhong, HONG Bo, ZHANG Quan-feng, ZENG Lian-bo, QIU Jun, LI Ran, DAI Jin-xiong. 2017: A STUDY ON IN-SITU STRESS MEASUREMENT IN A CANDIDATE SITE FOR CNNC NUCLEAR TECHNOLOGY INDUSTRIAL PARK IN GANSU PROVINCE. Journal of Geomechanics, 23(3): 475-486.
    BAO Linhai, DU Yi, GUO Qiliang, ZHANG Yanshan. 2017: IN-SITU STRESS MEASUREMENT AND RESEARCH ON TECTONIC STRESS FIELD DISTRIBUTION LAW OF CHENGDU-LANZHOU RAILWAY. Journal of Geomechanics, 23(5): 734-742.
    MA Xiumin, PENG Hua, BAI Jinpeng, LI Zhen, JIANG Jingjie. 2017: REVIEW ON THE RESEARCH PROGRESS OF THE COMPLIANCE OF ROCKS IN IN-SITU STRESS MEASUREMENT METHODS OF ANELASTIC STRAIN RECOVERY (ASR). Journal of Geomechanics, 23(4): 526-530.
    SUN Yu-jun, WU Zhong-hai, JIA Feng-qin. 2016: LITHOSPHERIC THERMAL-RHEOLOGICAL STRUCTURE AND DEEP GEODYNAMICS IN THE YANGTZE RIVER ECONOMIC BELT. Journal of Geomechanics, 22(3): 421-429.
    SONG Jie. 2014: THE CORRELATIONS BETWEEN GEOLOGICAL STRESS AND CASING DAMAGE AND BETWEEN ROCK MECHANICS PARAMETERS AND CASING DAMAGE IN SANDSTONE RESERVOIR. Journal of Geomechanics, 20(3): 324-330.
    WANG Ke, DAI Jun-sheng, FENG Zhen-dong, XIE Yan-xue, FAN Yang, WANG Yuan, ZHAO Li-bin. 2013: CALCULATING MODEL OF EQUIVALENT ROCK MECHANICAL PARAMETERS OF SAND-MUD INTERBED AND ITS APPLICATION. Journal of Geomechanics, 19(2): 143-151.
    PENG Hua, CUI Wei, MA Xiu-min, LI Jin-suo. 2006: HYDROFRACTURING IN-SITU STRESS MEASUREMENTS OF THE WATER DIVERSION AREA IN THE FIRST STAGE OF THE SOUTH-NORTH WATER DIVERSION PROJECT (WESTERN LINE). Journal of Geomechanics, 12(2): 182-190.
    CHEN Qun-ce, LI Fang-quan, MAO Ji-zhen. 2001: APPLICATION STUDY OF THREE DIMENSIONAL GEO-STRESS MEASUREMENTS BY USE OF HYDRAULIC FRACTURING METHOD. Journal of Geomechanics, 7(1): 69-78.
    WANG Xue-chao, GUO Qi-liang, ZHANG Hui, LIU Zhen-hong. 2000: CRUSTAL STRESS MEASUREMENT IN NORTHEASTERN QINGZANG PLATEAU BY HYDROFRACTURING. Journal of Geomechanics, 6(2): 64-70.
    ZENG Lixin. 1999: LABORATORY TEST METHOD STUDY OF DEEP ROCK PHYSICAL MECHANICS. Journal of Geomechanics, 5(1): 73-77.
    Chen Qunce, An Meijian, Li Fangquan. 1998: THEORETICAL DISCUSSION ON 3-D HYDRAULIC FRACTURING IN SITU STRESS MEASUREMTNT. Journal of Geomechanics, 4(1): 37-44.
  • Cited by

    Periodical cited type(5)

    1. 王建国,李培博,梁伟,羊嘉杰,桑树勋. 薄互层煤系气单井压裂合采的岩石力学地层理论初探. 中国矿业大学学报. 2025(01): 65-82 .
    2. 尹敢,李海根,翁春文. 云南新近系和古近系泥岩物理力学性质研究. 凿岩机械气动工具. 2025(01): 171-173 .
    3. 赵毅鑫,赵良辰,杨东辉,边华,杨哲,宫智馨. 基于改进组合弹簧模型的矿井地应力场计算方法. 采矿与岩层控制工程学报. 2024(01): 103-116 .
    4. 刘兵,郑坤,王超林,毕靖,连帅龙. 冻融环境下基于声发射的砂岩各向异性劣化机理分析. 中国地质灾害与防治学报. 2024(01): 132-142 .
    5. 赵环帅,潘永泰,乔鑫,王星宇,余超,黄嘉诚. 不同加载速率下青砂岩破裂演化规律及能量利用效率分析. 煤田地质与勘探. 2024(06): 69-78 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 72.5 %META: 72.5 %PDF: 10.3 %PDF: 10.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %China: 0.1 %China: 0.1 %三门峡: 0.1 %三门峡: 0.1 %上海: 0.9 %上海: 0.9 %中卫: 0.2 %中卫: 0.2 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.4 %兰州: 0.4 %北京: 16.3 %北京: 16.3 %十堰: 0.4 %十堰: 0.4 %华盛顿州: 0.4 %华盛顿州: 0.4 %南京: 1.1 %南京: 1.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %合肥: 0.4 %合肥: 0.4 %呼伦贝尔: 0.1 %呼伦贝尔: 0.1 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.5 %嘉兴: 0.5 %堪培拉: 0.2 %堪培拉: 0.2 %大同: 0.1 %大同: 0.1 %大庆: 0.5 %大庆: 0.5 %天津: 1.1 %天津: 1.1 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宜春: 0.2 %宜春: 0.2 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广州: 0.7 %广州: 0.7 %廊坊: 0.2 %廊坊: 0.2 %张家口: 4.9 %张家口: 4.9 %成都: 0.9 %成都: 0.9 %扬州: 0.5 %扬州: 0.5 %抚顺: 0.1 %抚顺: 0.1 %昆明: 1.1 %昆明: 1.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.6 %杭州: 0.6 %柳州: 0.1 %柳州: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.2 %沧州: 0.2 %泉州: 0.1 %泉州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.9 %济南: 0.9 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %湛江: 0.1 %湛江: 0.1 %滁州: 0.2 %滁州: 0.2 %漯河: 1.6 %漯河: 1.6 %焦作: 0.1 %焦作: 0.1 %珀斯: 0.1 %珀斯: 0.1 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 0.2 %石家庄: 0.2 %石河子: 0.1 %石河子: 0.1 %纽约: 0.4 %纽约: 0.4 %芒廷维尤: 20.6 %芒廷维尤: 20.6 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %葫芦岛: 0.1 %葫芦岛: 0.1 %西宁: 18.3 %西宁: 18.3 %西安: 1.8 %西安: 1.8 %诺沃克: 4.2 %诺沃克: 4.2 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 1.3 %运城: 1.3 %邯郸: 1.2 %邯郸: 1.2 %郑州: 0.8 %郑州: 0.8 %重庆: 0.2 %重庆: 0.2 %金华: 0.2 %金华: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %阿坝: 0.4 %阿坝: 0.4 %青岛: 0.2 %青岛: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他China三门峡上海中卫临汾乌鲁木齐保定兰州北京十堰华盛顿州南京南昌南通厦门合肥呼伦贝尔呼和浩特哈尔滨哥伦布嘉兴堪培拉大同大庆天津太原安康宜春宝鸡宣城巴音郭楞常州常德广州廊坊张家口成都扬州抚顺昆明晋城朝阳杭州柳州武汉沈阳沧州泉州洛杉矶洛阳济南淄博淮南温州湖州湛江滁州漯河焦作珀斯盘锦石家庄石河子纽约芒廷维尤芝加哥苏州葫芦岛西宁西安诺沃克贵阳费利蒙运城邯郸郑州重庆金华长春长沙阿坝青岛马鞍山黄石齐齐哈尔

Catalog

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (616) PDF downloads(87) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return