
Citation: | CHEN D S,JI H G,YUAN Y Z,et al.,2023. Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method[J]. Journal of Geomechanics,29(3):365−374 doi: 10.12090/j.issn.1006-6616.20232906 |
东濮凹陷位于渤海湾盆地西南临清坳陷的南部, 凹陷内发育规模和活动周期不尽相同的断裂, 这些断裂的长期继承性发育不仅控制了东濮凹陷的形成和发育, 也控制了盆地内油气分布与富集[1~7]。濮卫环洼带隶属于东濮凹陷中央隆起带, 为北部卫东-文东断裂系和濮城-陈营断裂系相向下落所形成的“断洼型”负向构造单元, 地质结构复杂, 储层空间展布变化大。目前, 构造高部位的勘探程度较高, 而洼陷带勘探程度还较低。因此, 深入研究该区断裂特征及其对油气运聚的作用, 对滚动勘探开发和隐蔽油气藏勘探具有重要意义。渤海湾及其周缘乃至华北地区油气成藏条件与油气运聚过程研究日亦深入, 已取得许多新成果[8~19]可以借鉴。
卫东-文东断裂系由复杂的卫东断裂破碎带和文东断层、文51断层等组成(图 1、表 1)。
![]() |
(1) 卫东断层
由3条呈雁行式排列的断层组成, 是一组东倾的滑脱性大断层, 北起古云集地区, 南至卫70井附近消失。断层在沙二下亚段沉积晚期产生, 至东营组沉积末期停止活动。断层走向NNE, 倾向SEE, 倾角15~50°, 落差为50~1130m。剖面上, 在沙三段盐层顺层滑动, 并在盐层内消失, 向下不切割基底。卫东断层下降盘伴生一系列反向“Y”字型次级断层, 从深层到浅层多期发育, 明显控制沙二段、沙一段及东营组等地层的沉积。
(2) 文东断层
文东断层是环洼带南部的西界断层, 向南断层落差逐渐增大。在研究区内, 断层走向NE、倾向SE, 延伸长度5km, 剖面上表现为上缓下陡, 落差为30~250m, 沙三下亚段沉积末期开始活动, 沙三中沉积期强烈活动, 至东营组沉积末期停止活动。
(3) 文51断层
属于卫东断层的伴生断层, 与卫东断层斜交, 呈反“ Y”形, 断层走向NEE, 倾向NWW, 倾角10~40°, 落差50~260m, 南大北小, 延伸长度约2.5km, 于沙二上至沙一期活动, 沙二上沉积期对沉积的控制作用明显。
濮城-陈营断裂系展布于濮城和陈营地区, 发育濮城南断层、濮67断层、濮31断层、濮138断层和陈营断层(见图 1、表 1)。
(1) 濮城南断层
断层走向NE, 倾向NW, 倾角25~60°, 落差50~560m, 延伸长度大于8.5km。断层活动时间为沙三中亚段早期至东营组沉积期。
(2) 濮67断层
濮67断层位于濮城-陈营断裂系的中段, 与濮城南断层和陈营断层首尾相接, 走向NNE, 倾向NWW, 延伸长度约10km。剖面上具有上陡下缓的特点, 倾角20~60°, 断层落差为50~360m, 北大南小。产生于沙三中亚段沉积期, 结束于沙二上亚段沉积末期。
(3) 濮31断层
濮31断层断面下陡上缓, 为濮67断层的伴生断层, 从沙三中后期一直活动至东营组沉积期。断层走向NNE、倾向NWW, 倾角40~60°, 落差50~200m, 延伸长度约10km。
(4) 濮138断层
位于濮31断层的西侧, 断层走向NNE向, 倾向NWW, 倾角40~60°, 落差为50~350m, 延伸长度约8km。剖面上, 向深部交接到濮67断层上。断层活动时间为沙三中-上亚段沉积期。
(5) 陈营断层
陈营断层是一条切割基底的区域性控制沉积断层, SN走向、倾向正西, 断层落差为50 ~1000m, 南端小、北端大, 延伸长度约10km。断裂活动开始于沙三下亚段沉积早期, 结束于沙二上亚段沉积晚期, 沙三下-中期剧烈活动。陈营断层与濮67断层呈雁行式排列, 向北斜交于古云集的云3断层。
目前主要采用断层生长指数、断层落差、断层活动速率等参数来定量表示断层的活动性[20~22]。濮卫环洼带主要断层生长指数和断层落差统计表明, 同一条断层的不同部位、甚至同一部位的不同时期, 其活动性都存在着较大的差异。
卫东断层是卫东-文东断裂系的主体, 沙二上亚段至东营组沉积期间, 持续较强的断裂活动, 是一条长期活动的控洼断层。卫东三号断层活动范围最广泛, 活动强度大, 断层最大落差高达1130m。东营组沉积期, 卫东断层的活动性最强, 断层中段生长指数高达3.5, 在601测线上断层落差达518m。沿走向分段性明显, 断层中段活动强度最大, 向两端活动性减弱(图 2a、b)。
濮城南断层位于濮城-陈营断裂系南端, 活动时间较长, 但整体活动性较弱, 最大落差为560m。沙三中-上亚段沉积期是该断裂主要活动期, 活动范围最广泛, 最大生长指数为1.8, 901测线上的断层落差达460m。沙二下开始活动强度逐渐减弱, 活动范围也缩小至中南部, 至东营期仅在1001测线附近活动, 落差为60m (图 2c、d)。
濮67断层活动时间相对较短, 沙三中-上亚段沉积时期断层活动最为强烈, 沙二下次之, 沙二上活动强度最小。沙三中-上亚段沉积时期, 在701~801测线附近活动性最强, 断层生长指数近1.8, 最大落差达360m, 为濮卫环洼带早期的控洼断裂之一(图 2e、f)。
濮31断层活动时间长, 不同时期、不同部位的断层活动强度变化较大。从断层生长指数来看, 沙三中-上沉积期断层活动性最强, 沙二下开始断层活动相对减弱, 沙一和东营期仅在741测线附近活动, 断层活动微弱。(图 2g)。
濮138断层活动时间较短, 沙三中亚段沉积期断层活动强度弱, 至沙三上亚段沉积期断层活动较为强烈, 且向西南方向活动性增强(图 2h)。
断层和连通砂体是濮卫环洼带最主要的运移通道, 二者共同构成了断层型、断-砂组合型油气输导体系, 它们在平面分布以及成藏模式上均具有较大的差异。
(1) 断层输导体系
该输导体系类型分布较为局限, 仅分布于文明寨的主体高部位、濮城断阶带和卫城卫东断层附近, 其中以文明寨主体部位最具代表性。文明寨主体构造位置较高, 自身生烃能力差, 区内断裂发育, 由于卫东断层沟通了烃源岩和储集层, 油气沿断层面向上垂向运移, 在适当部位聚集成藏, 油气的垂向运移距离远远大于侧向运移距离。
据地层水矿化度对比分析, 濮卫环洼带沙二段地层水具有异常高矿化度, 其值与下部沙三段地层水矿化度较接近。平面上, 异常高矿化度的CaCl2型地层水主要沿濮31、濮城南、卫东断层分布(图 3), 表明这些断层是流体运移的主要通道, 它们沟通了深部的地层, 使高矿化度地层水沿断裂带向上运移。
然而, 断层输导体系若输送大量的油气, 往往需要断层沟通有效烃源岩, 且在烃源岩层系内存在大量的砂体, 这些砂体可以汇聚生烃层系的油气, 然后借助于断层的沟通作用向上部垂向运移, 运移至地层倾角不大的地层进入断层面两侧砂体中形成油气藏。
(2) 断-砂复合输导体系
断层与砂体相互配置构成了濮卫环洼带运载油气的主要输导体系, 分布范围较广, 在卫城和濮城的主体部位最具代表性。目前已经发现的濮城油田、濮城南地区的文213含油气区等, 均具有此类运聚特征。
濮卫环洼带砂岩厚度较大, 断-砂匹配关系良好, 构成了良好的输导体系。该区域的多套砂岩储层呈层状分布于洼陷内及斜坡带, 纵向上每套输导层之上均有泥岩和盐岩盖层封隔, 以侧向输导为主(图 4)。此时, 砂体主要起运移通道的作用, 而断层主要起阻挡油气, 并调节油气运移层系和方向的作用。因此, 随着油气运移层系的不断变浅, 运移动力具有明显的衰减, 在断层活动停止、封堵条件较好的地区聚集成藏, 形成主断层附近的构造-地层油气藏和远离主断层的边部岩性油气藏。
断层活动时间与大规模油气运聚时间的匹配关系, 决定了断层在油气运移成藏中的贡献, 同时也决定了油气藏的分布特征[23]。濮卫环洼带烃源岩生排烃史、油气藏饱和压力及流体包裹体分析表明, 东营组沉积期沙三段烃源岩已经进入生烃门限, 是油气生成和成藏高峰期。东营组地层的剥蚀, 使烃源岩热演化生烃受到抑制甚至停止。新近纪以来研究区再次下沉接受沉积, 至新近纪晚期发生明显的二次生烃作用, 但此时构造活动弱, 生排烃量相对较小①。故该地区成藏关键时期是在东营组沉积时期[24]。
① 高平.濮卫洼陷岩性油气藏成藏规律与精细勘探[R].河南濮阳:中原油田分公司勘探开发科学研究院, 2008.
濮卫环洼带主要断层活动时间与油气运移期对比分析表明(表 2), 卫东断层活动时间长, 油气大规模运移时期强烈活动, 与成藏时间匹配好, 是油气从深层向浅层运移的重要通道。文东、濮31及濮城南等断层活动强度微弱, 活动范围局限, 但与油气大规模运移时间相匹配, 可充当油气运移的有效通道。文51、濮67、濮138和陈营等断层活动时间较早, 东营期已经停止活动或基本停止活动, 主要对油气的聚集成藏起圈闭遮挡的作用。
![]() |
此外, 断层本身活动的不均衡性也使油气运聚成藏情况复杂化。同一条断层(或断层的某一段)在不同时期或不同部位, 由于活动强度的不一致, 对油气成藏所起的作用也不尽相同, 某一时期作为油气运移的通道, 输导油气, 另一时期则成为阻止油气运移的屏障, 使油气在断层附近聚集成藏。
(1) 濮卫环洼带主要发育卫东-文东断裂系和濮城-陈营断裂系, 均为较大规模的二级断裂。卫东-文东断裂系由复杂的卫东断裂破碎带和文东断层、文51断层等组成, 濮城-陈营断裂系自东而西发育陈营断层、濮67断层、濮城南断层、濮31断层和濮138断层。
(2) 卫东、文东、濮城南及濮31等断层活动时间较长, 活动强度不一致, 与成藏时间匹配好, 是油气从深层向浅层运移的重要通道, 文东、濮31及濮城南等断层可充当油气运移的有效通道。
(3) 断层和连通砂体构成了断层型、断-砂组合型油气输导体系。断层型输导体系沟通了烃源岩和储集层, 增强了油气垂向运移能力, 断-砂组合型油气输导体系以侧向输导为主, 断层主要起阻挡油气, 并调节油气运移层系和方向的作用。这些结论对本区油气田滚动勘探开发有重要意义。
[1] |
BAO L H, DU Y, GUO Q L, et al. , 2017. In-situ stress measurement and research on tectonic stress field distribution law of Chengdu-Lanzhou railway[J]. Journal of Geomechanics, 23(5): 734-742. (in Chinese with English abstract)
|
[2] |
BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
|
[3] |
CAI M, QIAO L, YU J, 1995. Study and tests of techniques for increasing overcoring stress measurement accuracy[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(4): 375-384.
|
[4] |
CAI M, KAISER P K, TASAKA Y, et al. , 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 41(5): 833-847. doi: 10.1016/j.ijrmms.2004.02.001
|
[5] |
CAI M F, LIU W D, LI Y, 2010. In-situ stress measurement at deep position of Linglong gold mine and distribution law of in-situ stress field in mine area[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2): 227-233. (in Chinese with English abstract)
|
[6] |
CAI M F, JI D, GUO Q F, 2013a. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 32(10): 1973-1980. (in Chinese with English abstract)
|
[7] |
CAI M F, GUO Q F, LI Y, et al. , 2013b. In situ stress measurement and its application in the 10th Mine of Pingdingshan Coal Group[J]. Journal of University of Science and Technology Beijing, 35(11): 1399-1406. (in Chinese with English abstract)
|
[8] |
CHEN J L, 2019. Numerical simulation methods and experimental investigation of the hydraulic fracturing of heterogeneous Glutenites[D]. Beijing: China University of Mining & Technology (Beijing). (in Chinese with English abstract)
|
[9] |
CHEN N, WANG C H, GAO G Y, et al. , 2021. Characteristics of in-situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376-3384. (in Chinese with English abstract)
|
[10] |
CHEN Y Q, NAGAYA Y, ISHIDA T, 2015. Observations of fractures induced by hydraulic fracturing in anisotropic granite[J]. Rock Mechanics and Rock Engineering, 48(4): 1455-1461. doi: 10.1007/s00603-015-0727-9
|
[11] |
GOODMAN R E, 1963. Subaudible noise during compression of rocks[J]. GSA Bulletin, 74(4): 487-490. doi: 10.1130/0016-7606(1963)74[487:SNDCOR]2.0.CO;2
|
[12] |
HOU K K, WU Q Z, ZHANG F P, et al. , 2022. Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress[J]. Rock and Soil Mechanics, 43(4): 1093-1102. (in Chinese with English abstract)
|
[13] |
HUBBERT M K, WILLIS D G, 1957. Mechanics of hydraulic fracturing[J]. Petroleum Transactions, 210(1): 153-168.
|
[14] |
JIANG M Y, 2019. Metallogeneses and tectonic setting analysis of Shaling gold deposit in Jiaodong[D]. Hebei GEO University. (in Chinese with English abstract)
|
[15] |
LEE H, ONG S H, 2018. Estimation of in situ stresses with hydro-fracturing tests and a statistical method[J]. Rock Mechanics and Rock Engineering, 51(3): 779-799. doi: 10.1007/s00603-017-1349-1
|
[16] |
LEEMAN E R, HAYES D J, 1966. A technique for determining the complete state of stress in rock using a single borehole[C]//Proceedings 1st congress international society of rock mechanics. Lisbon: 17-24.
|
[17] |
LI B, ZHANG W, WEN R, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: engineering geological significance[J]. Journal of Geomechanics, 28(2): 191-202. (in Chinese with English abstract)
|
[18] |
LIU J, HUI C, FAN J M, et al. , 2021. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31-39. (in Chinese with English abstract)
|
[19] |
LIU Y D, LIN J, FENG Y J, et al. , 2018. Research on tensile strength of rock based on hydraulic fracturing method[J]. Rock and Soil Mechanics, 39(5): 1781-1788. (in Chinese with English abstract)
|
[20] |
LJUNGGREN C, CHANG Y T, JANSON T, et al. , 2003. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 975-989. doi: 10.1016/j.ijrmms.2003.07.003
|
[21] |
MENG X B, XU Y D, ZHANG Y J, et al. , 2019. Study on the variation law of crustal stress field in tight reservoir under multi field coupling[J]. Journal of Geomechanics, 25(4): 467-474. (in Chinese with English abstract)
|
[22] |
QIN X H, CHEN Q C, ZHAO X G, et al. , 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements[J]. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189-1202. (in Chinese with English abstract)
|
[23] |
QIU Y C, LIANG W G, LI J, et al. , 2022. Study on fracture morphology of hydraulic fracturing in heterogeneous elastoplastic coal[J]. Journal of China Coal Society, 47(10): 3668-3679. (in Chinese with English abstract)
|
[24] |
REN Y, WANG D, LI T B, et al. , 2021. In-situ geostress characteristics and engineering effect in Ya’an—Xinduqiao section of Sichuan—Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 40(1): 65-76. (in Chinese with English abstract)
|
[25] |
SU X B, JI H G, QUAN D L, et al. , 2020. Relationship between spatial variability of rock strain and b value under splitting condition[J]. Journal of China Coal Society, 45(S1): 239-246. (in Chinese with English abstract)
|
[26] |
TEUFEL L W, 1983. Determination of in-situ stress from anelastic strain recovery measurements of oriented core[C]//Symposium on low permeability gas reservoirs. Denver, Colorado: 421-430.
|
[27] |
WANG L J, SUN D S, LIN W R, et al. , 2012. Anelastic strain recovery method to determine in-situ stress and application example[J]. Chinese Journal of Geophysics, 55(5): 1674-1681. (in Chinese with English abstract)
|
[28] |
WU J W, ZHANG W Y, PENG H, et al. , 2021. In-situ stress measurement by hydraulic fracturing method around Panji coal mine exploration area in Huainan coalfield[J]. Journal of Engineering Geology, 29(4): 972-984. (in Chinese with English abstract)
|
[29] |
YANG T H, TAN G H, TANG C A, et al. , 2002. Influence of heterogeneity on hydraulic fracturing in rocks[J]. Chinese Journal of Geotechnical Engineering, 24(6): 724-728. (in Chinese with English abstract)
|
[30] |
ZHANG C Y, DU S H, HE M C, et al. , 2022. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 41(5): 954-968. (in Chinese with English abstract)
|
[31] |
ZHANG H, SHI G, WU H, et al. , 2020. In-situ stress measurement in the shallow basement of the shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594. (in Chinese with English abstract)
|
[32] |
ZHANG T Z, JI H G, SU X B, et al. , 2022. Evaluation and classification of rock heterogeneity based on acoustic emission detection[J]. International Journal of Minerals, Metallurgy and Materials, 29(12): 2117-2125. doi: 10.1007/s12613-021-2381-4
|
[33] |
ZHANG Z X, 2002. An empirical relation between mode I fracture toughness and the tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 39(3): 401-406. doi: 10.1016/S1365-1609(02)00032-1
|
[34] |
ZHAO X G, WANG J, MA L K, et al. , 2014. Distribution characteristics of geostress field in Xinchang rock block of candidate Beishan area for high level radioactive waste repository in China[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S2): 3750-3759. (in Chinese with English abstract)
|
[35] |
ZHUANG L, ZANG A, JUNG S, 2022. Grain-scale analysis of fracture paths from high-cycle hydraulic fatigue experiments in granites and sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 157: 105177. doi: 10.1016/j.ijrmms.2022.105177
|
[36] |
包林海, 杜义, 郭啟良, 等, 2017. 成兰铁路地应力测量与构造应力场分布规律研究[J]. 地质力学学报, 23(5): 734-742. doi: 10.3969/j.issn.1006-6616.2017.05.010
|
[37] |
蔡美峰, 刘卫东, 李远, 2010. 玲珑金矿深部地应力测量及矿区地应力场分布规律[J]. 岩石力学与工程学报, 29(2): 227-233.
|
[38] |
蔡美峰, 冀东, 郭奇峰, 2013a. 基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J]. 岩石力学与工程学报, 32(10): 1973-1980.
|
[39] |
蔡美峰, 郭奇峰, 李远, 等, 2013b. 平煤十矿地应力测量及其应用[J]. 北京科技大学学报, 35(11): 1399-1406. doi: 10.13374/j.issn1001-053x.2013.11.003
|
[40] |
陈佳亮, 2019. 非均质砂砾岩水压致裂的数值模拟方法与实验研究[D]. 北京: 中国矿业大学(北京).
|
[41] |
陈念, 王成虎, 高桂云, 等, 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376-3384. doi: 10.16285/j.rsm.2021.0380
|
[42] |
侯奎奎, 吴钦正, 张凤鹏, 等, 2022. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 43(4): 1093-1102.
|
[43] |
姜梦瑶, 2019. 胶东纱岭金矿床成矿机制及构造背景分析[D]. 河北地质大学.
|
[44] |
李彬, 张文, 文冉, 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析[J]. 地质力学学报, 28(2): 191-202.
|
[45] |
刘建, 惠晨, 樊建明, 等, 2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 27(1): 31-39.
|
[46] |
刘跃东, 林健, 冯彦军, 等, 2018. 基于水压致裂法的岩石抗拉强度研究[J]. 岩土力学, 39(5): 1781-1788.
|
[47] |
孟宪波, 徐佑德, 张曰静, 等, 2019. 多场耦合作用下致密储层地应力场变化规律研究: 以准噶尔盆地某区为例[J]. 地质力学学报, 25(4): 467-474. doi: 10.12090/j.issn.1006-6616.2019.25.04.044
|
[48] |
秦向辉, 陈群策, 赵星光, 等, 2020. 水压致裂地应力测量中系统柔度影响试验研究[J]. 岩石力学与工程学报, 39(6): 1189-1202. doi: 10.13722/j.cnki.jrme.2019.1204
|
[49] |
邱宇超, 梁卫国, 李静, 等, 2022. 非均质弹塑性煤体水压致裂裂纹形态研究[J]. 煤炭学报, 47(10): 3668-3679. doi: 10.13225/j.cnki.jccs.2021.1684
|
[50] |
任洋, 王栋, 李天斌, 等, 2021. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报, 40(1): 65-76. doi: 10.13722/j.cnki.jrme.2020.0537
|
[51] |
苏晓波, 纪洪广, 权道路, 等, 2020. 劈裂条件下岩石应变空间变异性与b值关系[J]. 煤炭学报, 45(S1): 239-246.
|
[52] |
王连捷, 孙东生, 林为人, 等, 2012. 地应力测量的非弹性应变恢复法及应用实例[J]. 地球物理学报, 55(5): 1674-1681. doi: 10.6038/j.issn.0001-5733.2012.05.024
|
[53] |
吴基文, 张文永, 彭华, 等, 2021. 淮南煤田潘集煤矿外围勘查区水压致裂地应力测量研究[J]. 工程地质学报, 29(4): 972-984. doi: 10.13544/j.cnki.jeg.2021-0302
|
[54] |
杨天鸿, 谭国焕, 唐春安, 等, 2002. 非均匀性对岩石水压致裂过程的影响[J]. 岩土工程学报, 24(6): 724-728. doi: 10.3321/j.issn:1000-4548.2002.06.011
|
[55] |
张重远, 杜世回, 何满潮, 等, 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 41(5): 954-968.
|
[56] |
张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594. doi: 10.12090/j.issn.1006-6616.2020.26.04.051
|
[57] |
赵星光, 王驹, 马利科, 等, 2014. 高放废物地质处置库北山预选区新场岩体地应力场分布规律[J]. 岩石力学与工程学报, 33(S2): 3750-3759. doi: 10.13722/j.cnki.jrme.2014.s2.044
|
![]() |
![]() |