Citation: | ZHAO Y F,SHI W,ZHANG Y,2023. Study on the reconstruction of the paleo-tectonic stress field and its evolution in the Jinchuan mining district, Gansu Province, China[J]. Journal of Geomechanics,29(6):770−785 doi: 10.12090/j.issn.1006-6616.2023161 |
[1] |
ANGELIER J, 1984. Tectonic analysis of fault slip data sets[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5835-5848. doi: 10.1029/JB089iB07p05835
|
[2] |
DONG X P, LI Z H, JING X H, et al. , 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics, 29(4): 465-484. (in Chinese with English abstract)
|
[3] |
FAURE M, LIN W, CHEN Y, 2012. Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block?[J]. Terra Nova, 24(6): 456-466. doi: 10.1111/ter.12002
|
[4] |
GAO Y L, TANG Z L, SONG X Y, et al. , 2009. Study on genesis of the concealed Cu-rich ore body in the Jinchuan Cu-Ni deposit and its prospecting in depth[J]. Acta Petrologica Sinica, 25(12): 3379-3395. (in Chinese with English abstract)
|
[5] |
GONG J H, ZHANG J X, YU S Y, 2011. The origin of Longshoushan Group and associated rocks in the southern part of the Alxa block: constraint from LA-ICP-MS U-Pb zircon dating[J]. Acta Petrologica Et Mineralogica, 30(5): 795-818. (in Chinese with English abstract)
|
[6] |
GONG J H, 2013. Compositions, characteristics, chronological framework and origin of early-Precambrian metamorphic basement in western Alxa block[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
|
[7] |
HE Q J, LAI J Q, MAO X C, et al. , 2019. Tectonic stress field and tectonic evolution in Jinchuan mining district, Gansu province[J]. Contributions to Geology and Mineral Resources Research, 34(2): 265-273. (in Chinese with English abstract)
|
[8] |
LI C S, XU Z H, DE WAAL S A, et al. , 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis[J]. Mineralium Deposita, 39(2): 159-172. doi: 10.1007/s00126-003-0389-5
|
[9] |
LI W Y, TANG Z L, GUO Z P, et al. , 2004. Petrogenetic epoch and geochemical characteristics of mafic-ultramafic rocks on the southern margin of Alxa massif in northern China[J]. Acta Petrologica et Mineralogica, 23(2): 117-126. (in Chinese with English abstract)
|
[10] |
LI X H, SU L, SONG B, et al. , 2004. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin, 49(4): 420-422. doi: 10.1007/BF02900329
|
[11] |
LI Z, 2009. Analysis on the ore-controlling tectonic in Jinchuan copper-nickel Sulphide deposit, Gansu Province[D]. Changsha: Central South University. (in Chinese with English abstract)
|
[12] |
LI Z Y, DING L, LIPPERT P C, et al. , 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia[J]. Geology, 44(9): 727-730. doi: 10.1130/G38030.1
|
[13] |
LIAO W J, 2016. Tectonic lithofacies mapping, stress field analysis and the deep metallogenetic prognosis in Jinchuan copper and nickel orefield[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
|
[14] |
MENG Q R, 2003. What drove late Mesozoic extension of the northern China–Mongolia tract?[J]. Tectonophysics, 369(3-4): 155-174. doi: 10.1016/S0040-1951(03)00195-1
|
[15] |
MENG Q R, HU J M, JIN J Q, et al. , 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region[J]. Basin Research, 15(3): 397-415. doi: 10.1046/j.1365-2117.2003.00209.x
|
[16] |
MERCIER J L, CAREY-GAILHARDIS E, SÉBRIER M, 1991. Palaeostress determinations from fault kinematics: Application to the neotectonics of the Himalayas-Tibet and the Central Andes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 337(1645): 41-52.
|
[17] |
MI W M, LUO X R, ZHANG L L, et al. , 2011. Research on geophysical and geochemical exploration for prospecting copper-nickel Sulphide deposits in South Jinchuan, Gansu Province[J]. Guangxi Sciences, 18(3): 249-252. (in Chinese with English abstract)
|
[18] |
MI W M, WANG J C, ZHANG Y L, et al. , 2018. Geological characteristics and its influence of F1 fault in Jinchuan Cu-Ni mining area in Gansu province[J]. Modern Mining, 34(3): 107-110, 114. (in Chinese with English abstract)
|
[19] |
RATSCHBACHER L, HACKER B R, CALVERT A, et al. , 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 366(1-2): 1-53. doi: 10.1016/S0040-1951(03)00053-2
|
[20] |
RITZ J F, TABOADA A, 1993. Revolution stress ellipsoids in brittle tectonics resulting from an uncritical use of inverse methods[J]. Bulletin de la Société Géologique de France, 164(4): 519-531.
|
[21] |
SHI W, HU J M, CHEN H, et al. , 2015. Cenozoic tectonic evolution of the arcuate structures in the Northeast Tibetan Plateau[J]. Acta Geologica Sinica-English Edition, 89(2): 676-677. doi: 10.1111/1755-6724.12457
|
[22] |
SHI W, CHEN L, CHEN X Q, et al. , 2019. The Cenozoic tectonic evolution of the faulted basins in the northern margin of the Eastern Qinling Mountains, Central China: Constraints from fault kinematic analysis[J]. Journal of Asian Earth Sciences, 173: 204-224. doi: 10.1016/j.jseaes.2019.01.018
|
[23] |
SHI W, DONG S W, HU J M, 2020. Neotectonics around the Ordos Block, North China: A review and new insights [J]. Earth-Science Reviews, 200: 102969. doi: 10.1016/j.earscirev.2019.102969
|
[24] |
SONG X Y, KANG J, LONG T M, et al. , 2023. Bifurcate magma conduit of Jinchuan super-large Ni-Cu-PGE sulfide deposit in Gansu, China and its implications for deep ore prospecting[J]. Journal of Earth Sciences and Environment, 45(5): 1049-1062. (in Chinese with English abstract)
|
[25] |
SU Z, MAO X C, LI L J, et al. , 2023. Quantitative analysis of the structural ore-controlling laws in Jinchuan Ni-Cu-(PGE) deposit[J]. Mineral Exploration, 14(5): 679-690. (in Chinese with English abstract)
|
[26] |
TANG Z L, 1990. Minerogenetic model of the Jinchuan copper and nickel sulfide deposit[J]. Geoscience, 4(4): 55-64. (in Chinese with English abstract)
|
[27] |
TANG Z L, LI W Y, 1995. Mineralization model and geology of the Jinchuan PGE-bearing deposit[M]. Beijing: Geology Press. (in Chinese)
|
[28] |
TANG Z L, BAI Y L, 1999. Geotectonic framework and metallogenic system in the southwest margin of North China paleocontinent[J]. Earth Science Frontiers, 6(2): 271-283. (in Chinese with English abstract)
|
[29] |
TANG Z L, BAI Y L, 2000. The geotectonic setting of the large and superlarge mineral deposits in the southwest margin of North China Paleoplate[J]. Acta Geology Gansu, 9(1): 1-15. (in Chinese with English abstract)
|
[30] |
TANG Z L, QIAN Z Z, JIANG C Y, et al. , 2006. Magmatic Ni-Cu-PGE sulphide deposits and metallogenic prognosis in China[M]. Beijing: Geology Press. (in Chinese)
|
[31] |
TAO N, DUAN J, DANIŠÍK M, et al. , 2023. Paleozoic tectonothermal evolution of the Jinchuan Ni-Cu sulfide deposit, NW China: New constraints from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 250: 105622. doi: 10.1016/j.jseaes.2023.105622
|
[32] |
TIAN Y L, WU S J, MENG R, et al. , 2007. LA-ICPMS Zircon U-Pb age of the Jinchuan ultramafic intrusion[J]. Acta Mineralogica Sinica, 27(2): 211-217. (in Chinese with English abstract)
|
[33] |
TONG H M, YIN A, 2011. Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 503(3-4): 195-200. doi: 10.1016/j.tecto.2011.02.012
|
[34] |
WAN Y S, LIU D Y, DONG C Y, et al. , 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era[J]. Geological Society, London, Special Publications, 323(1): 73-97. doi: 10.1144/SP323.4
|
[35] |
WU M B, LIU C Y, ZHENG M L, et al. , 2007. Jurassic depositional-tectonic evolution in the Yabulai basin, western Inner Mongolia, China and direction of petroleum exploration[J]. Geological Bulletin of China, 26(7): 857-863. (in Chinese with English abstract)
|
[36] |
YAN H Q, LIU Q F, TANG Z L, et al. , 2015. Structural properties of the Longshoushan block: Constraint from LA-ICP-MS U-Pb zircon dating[J]. Engineering Sciences, 17(2): 59-72. (in Chinese with English abstract)
|
[37] |
YANG Y T, GUO Z X, SONG C C, et al. , 2015. A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous[J]. Gondwana Research, 28(3): 1096-1116. doi: 10.1016/j.gr.2014.09.010
|
[38] |
YU J X, 2017. Active tectonics in the southern Gobi-Alashan Block and its response to the interactions of the adjacent crustal blocks[J]. Recent Developments in World Seismology(12): 40-41. (in Chinese)
|
[39] |
ZENG N S, WANG J C, LUO X R, et al. , 2013. Structural sequence and its relationship with Cu-Ni sulfide ore deposit in the Jinchuan Area, Gansu, China[J]. Earth Science Frontiers, 20(6): 210-218. (in Chinese with English abstract)
|
[40] |
ZENG R Y, LAI J Q, MAO X C, et al. , 2013. Evolution of fault system and its controlling on Jinchuan Cu-Ni (PGE) sulfide deposit[J]. The Chinese Journal of Nonferrous Metals, 23(9): 2574-2583. (in Chinese with English abstract)
|
[41] |
ZHANG B H, ZHANG J, WANG Y N, et al. , 2017. Late Mesozoic-Cenozoic exhumation of the northern Hexi Corridor: constrained by apatite fission track ages of the Longshoushan[J]. Acta Geologica Sinica-English Edition, 91(5): 1624-1643. doi: 10.1111/1755-6724.13402
|
[42] |
ZHANG J, WANG Y N, QU J F, et al. , 2021a. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: a review[J]. International Geology Review, 63(12): 1490-1520. doi: 10.1080/00206814.2020.1783583
|
[43] |
ZHANG J, CUNNINGHAM D, YUN L, et al. , 2021b. Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China[J]. Journal of Asian Earth Sciences, 205: 104597. doi: 10.1016/j.jseaes.2020.104597
|
[44] |
ZHAO H B, HE X R, WANG X Y, et al. , 2013. Structural characteristics of Chaoshui Basin[J]. Lithologic Reservoirs, 25(2): 36-40, 48. (in Chinese with English abstract)
|
[45] |
ZHENG M L, LI M J, CAO C C, et al. , 2003. Superposed characteristics of Cretaceous and Jurassic basins in Beishan-Alaxa area[J]. Geotectonica et Metallogenia, 27(4): 384-389. (in Chinese with English abstract)
|
[46] |
ZHENG Y D, ZHANG J J, ZHANG B, 2022. Two pillar theories of structural geology in the new century: The MEM criterion and the deformation partitioning[J]. Journal of Geomechanics, 28(3): 319-337. (in Chinese with English abstract)
|
[47] |
ZHU R X, ZHANG H F, ZHU G, et al. , 2017. Craton destruction and related resources[J]. International Journal of Earth Sciences, 106(7): 2233-2257. doi: 10.1007/s00531-016-1441-x
|
[48] |
董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报, 29(4): 465-484.
|
[49] |
高亚林, 汤中立, 宋谢炎, 等, 2009. 金川铜镍矿床隐伏富铜矿体成因研究及其深部找矿意义[J]. 岩石学报, 25(12): 3379-3395.
|
[50] |
宫江华, 张建新, 于胜尧, 2011. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属: 来自LA-ICP-MS锆石U-Pb年龄的制约[J]. 岩石矿物学杂志, 30(5): 795-818.
|
[51] |
宫江华, 2013. 西阿拉善地块早前寒武纪变质基底组成、性质、年代格架及归属[D]. 北京: 中国地质科学院.
|
[52] |
和秋姣, 赖健清, 毛先成, 等, 2019. 甘肃金川矿区构造应力场与构造演化研究[J]. 地质找矿论丛, 34(2): 265-273. doi: 10.6053/j.issn.1001-1412.2019.02.014
|
[53] |
李文渊, 汤中立, 郭周平, 等, 2004. 阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征[J]. 岩石矿物学杂志, 23(2): 117-126.
|
[54] |
李献华, 苏犁, 宋彪, 等, 2004. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 49(4): 401-402.
|
[55] |
李佐, 2009. 甘肃金川铜镍硫化物矿床控矿构造研究[D]. 长沙: 中南大学.
|
[56] |
廖文建, 2016. 金川铜镍矿区构造岩相填图、应力场分析和深部成矿预测[D]. 中国地质大学(北京).
|
[57] |
米文满, 罗先熔, 张琳琳, 等, 2011. 甘肃金川南延铜镍硫化物矿床物化探综合找矿研究[J]. 广西科学, 18(3): 249-252.
|
[58] |
米文满, 王俊超, 张永龙, 等, 2018. 甘肃金川铜镍矿区F1断层地质特征及其影响[J]. 现代矿业, 34(3): 107-110, 114.
|
[59] |
宋谢炎, 康健, 隆廷茂, 等, 2023. 甘肃金川超大型Ni-Cu-PGE硫化物矿床岩浆通道分枝构造及其深部找矿意义[J]. 地球科学与环境学报, 45(5): 1049-1062. doi: 10.19814/j.jese.2023.05063
|
[60] |
苏哲, 毛先成, 黎隆交, 等, 2023. 金川铜镍硫化物矿床构造控矿定量分析[J]. 矿产勘查, 14(5): 679-690.
|
[61] |
汤中立, 1990. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 4(4): 55-64.
|
[62] |
汤中立, 李文渊, 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社.
|
[63] |
汤中立, 白云来, 1999. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 6(2): 271-283.
|
[64] |
汤中立, 白云来, 2000. 华北板块西南边缘大型、超大型矿床的地质构造背景[J]. 甘肃地质学报, 9(1): 1-15.
|
[65] |
汤中立, 钱壮志, 姜常义, 等, 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社.
|
[66] |
田毓龙, 武栓军, 孟蓉, 等, 2007. 金川超镁铁质岩体LA-ICPMS锆石U-Pb年龄[J]. 矿物学报, 27(2): 211-217. doi: 10.3321/j.issn:1000-4734.2007.02.017
|
[67] |
吴茂炳, 刘春燕, 郑孟林, 等, 2007. 内蒙古西部雅布赖盆地侏罗纪沉积-构造演化及油气勘探方向[J]. 地质通报, 26(7): 857-863.
|
[68] |
闫海卿, 刘巧峰, 汤中立, 等, 2015. 龙首山地块的构造属性: 来自U-Pb锆石年龄的约束[J]. 中国工程科学, 17(2): 59-72.
|
[69] |
俞晶星, 2017. 阿拉善地块南部构造活动及其对周边地块相互作用的响应[J]. 国际地震动态(12): 40-41.
|
[70] |
曾南石, 汪劲草, 罗先熔, 等, 2013. 金川地区构造序列及与铜镍硫化物矿床的关系[J]. 地学前缘, 20(6): 210-218.
|
[71] |
曾认宇, 赖健清, 毛先成, 等, 2013. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制[J]. 中国有色金属学报, 23(9): 2574-2583.
|
[72] |
赵宏波, 何昕睿, 王筱烨, 等, 2013. 潮水盆地构造特征[J]. 岩性油气藏, 25(2): 36-40, 48.
|
[73] |
郑孟林, 李明杰, 曹春潮, 等, 2003. 北山—阿拉善地区白垩纪、侏罗纪盆地叠合特征[J]. 大地构造与成矿学, 27(4): 384-389.
|
[74] |
郑亚东, 张进江, 张波, 2022. 新世纪构造地质学两大支柱理论: 最大有效力矩准则与变位形分解[J]. 地质力学学报, 28(3): 319-337.
|