Citation: | LIU S X,FU H Q,FENG X Q,et al.,2024. Fracture network complexity of tight sandstone and its influencing factors[J]. Journal of Geomechanics,30(4):563−578 doi: 10.12090/j.issn.1006-6616.2023128 |
[1] |
BARTON C C, 1995. Fractal analysis of scaling and spatial clustering of fractures[M]. In: Fractals in the Earth Sciences. Springer, 141–178.
|
[2] |
BERKOWITZ B. , HADAD A, 1997. Fractal and multifractal measures of natural and synthetic fracture networks[J]. Journal Of Geophysical Research-solid Earth 102: 12205–12218
|
[3] |
BIENIAWSKI Z T, 1967. Mechanism of brittle fracture of rock: Part II-experimental studies[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4(4): 407-423.
|
[4] |
CAI M, KAISER P K, TASAKA Y, et al., 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 41(5): 833-847. doi: 10.1016/j.ijrmms.2004.02.001
|
[5] |
CAI M, MORIOKA H, KAISER P K, et al., 2007. Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics and Mining Sciences, 44(4): 538-549. doi: 10.1016/j.ijrmms.2006.09.012
|
[6] |
CHEN X, MA L T, SHI C L, et al., 2022. Water occurrence and identification method of the water-bearing degree of tight sandstone reservoirs in the Linxing block[J]. Geology and Exploration, 58(6): 1331-1340. (in Chinese with English abstract
|
[7] |
DERSHOWITZ W S, HERDA H H, et al. , 1992. Interpretation of fracture spacing and intensity[C]. In: The 33th Us Symposium on Rock Mechanics. USRMS, American Rock. Mechanics Association.
|
[8] |
DING C D, ZHANG Y, YANG X T, et al., 2019. Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism[J]. Rock and Soil Mechanics, 40(9): 3300-3308. (in Chinese with English abstract
|
[9] |
DUAN M K, JIANG C B, GAN Q, et al., 2020. Experimental investigation on the permeability, acoustic emission and energy dissipation of coal under tiered cyclic unloading[J]. Journal of Natural Gas Science and Engineering, 73: 103054. doi: 10.1016/j.jngse.2019.103054
|
[10] |
DUNCAN P M, EISNER L, 2010. Reservoir characterization using surface microseismic monitoring[J]. Geophysics, 75(5): 75A139-75A146. doi: 10.1190/1.3467760
|
[11] |
EBERHARDT E, STIMPSON B, STEAD D, 1999. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures[J]. Rock Mechanics and Rock Engineering, 32(2): 81-99. doi: 10.1007/s006030050026
|
[12] |
FAN J M, CHEN X D, LEI Z D, et al., 2019. Characteristics of natural and hydraulic fractures in tight oil reservoir in Ordos Basin and its implication to field development[J]. Journal of China University of Petroleum, 43(3): 98-106. (in Chinese with English abstract
|
[13] |
GAO C Y, ZHAO F H, GAO L F, et al., 2023. The methods of fracture prediction based on structural strain analysis and its application[J]. Journal of Geomechanics, 29(1): 21-33. (in Chinese with English abstract
|
[14] |
GHASEMI S, KHAMEHCHIYAN M, TAHERI A, et al., 2020. Crack evolution in damage stress thresholds in different minerals of granite rock[J]. Rock Mechanics and Rock Engineering, 53(3): 1163-1178. doi: 10.1007/s00603-019-01964-9
|
[15] |
GRIFFITH A A, 1924. The theory of rupture[C]. In: Proceedings of the First International Congress for Applied Mechanics, 55-63.
|
[16] |
GRIFFITH A. A., 1920. The Phenomena of Rupture and Flow in Solids[J]. Phil Trans Roy Soc(London), A221: 162-198.
|
[17] |
GUO Y H, 2018. Experimental study on the effect of particle size on the mechanical properties of sandstone[D]. Qingdao: Shandong University of Science and Technology. (in Chinese with English abstract
|
[18] |
HOU B, ZHANG R X, ZENG Y J, et al., 2018. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 170: 231-243. doi: 10.1016/j.petrol.2018.06.060
|
[19] |
JARVIE D M, HILL R J, RUBLE T E, et al., 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068
|
[20] |
LI B, LI J L, WANG P, et al., 2023. Confining pressure effect and quantitative characterization of rock shear strength parameters[J]. China Mining Magazine, 32(2): 157-164. (in Chinese with English abstract
|
[21] |
LI M, GUO Y H, WANG H C, et al., 2020. Effects of mineral composition on the fracture propagation of tight sandstones in the Zizhou area, east Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 78: 103334. doi: 10.1016/j.jngse.2020.103334
|
[22] |
LI S Y, HE T M, YIN X C, 2010. Introduction of rock fracture mechanics[M]. Hefei: University of Science and Technology of China Press. (in Chinese)
|
[23] |
LI Y W, YANG S, ZHAO W C, et al., 2018. Experimental of hydraulic fracture propagation using fixed-point multistage fracturing in a vertical well in tight sandstone reservoir[J]. Journal of Petroleum Science and Engineering, 171: 704-713. doi: 10.1016/j.petrol.2018.07.080
|
[24] |
LING J M, 1993. Study on the mesoscopical characteristics of rock damage under compressive loading[J]. Journal of Tongji University, 21(2): 219-226. (in Chinese with English abstract
|
[25] |
LIU F Y, YANG T H, ZHANG P H, et al., 2018. Dynamic inversion of rock fracturing stress field based on acoustic emission[J]. Rock and Soil Mechanics, 39(4): 1517-1524. (in Chinese with English abstract
|
[26] |
LIU J S, DING W L, XIAO Z K, et al., 2019. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 34(6): 2283-2300. (in Chinese with English abstract
|
[27] |
LIU S X, WANG Z X, ZHANG L Y, 2018. Experimental study on the cracking process of layered shale using X-ray microCT[J]. Energy Exploration & Exploitation, 36(2): 297-313.
|
[28] |
LIU S X, WANG Z X, ZHANG L Y, et al., 2018. Micromechanics properties analysis of shale based on nano-indentation[J]. Journal of Experimental Mechanics, 33(6): 957-968. (in Chinese with English abstract
|
[29] |
LIU S X, WANG Z X, ZHANG L Y, et al., 2019. Effects of microstructure characteristics of shale on development of complex fracture network[J]. Journal of Mining and Safety Engineering, 36(2): 420-428. (in Chinese with English abstract
|
[30] |
MA S W, WEI L, WANG Y J, et al., 2022. Characterization and evaluation of microscopic pore structures of tight sandstone reservoir in the 8th member of Shihezi Formation in southern Ordos Basin[J]. Geology and Exploration, 58(6): 1321-1330. (in Chinese with English abstract
|
[31] |
MANDELBROT B B, 1982. The Fractal Geometry of Nature, vol. 1. WH freeman, New York. Matsumoto, N., Yomogida, K., Honda, S., 1992. Fractal analysis of fault systems in Japan and the Philippines[J]. Geophys. Res. Lett, 19: 357-360. doi: 10.1029/92GL00202
|
[32] |
MIAO S Y, ZHANG H J, CHEN Y K, et al. , 2019. Surface microseismic monitoring of shale gas hydraulic fracturing based on microseismic location and tomography[J]. Geophysical Prospecting for Petroleum, 58(2): 262-271, 284. (in Chinese with English abstract
|
[33] |
NASSERI M H, RAO K S, RAMAMURTHY T, 1997. Failure mechanism in schistose rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 34(3-4): 219. e1-219. e15.
|
[34] |
PAN L Y, HAO L H, LIU K X, et al., 2023. Fracture Propagation Law of Hydraulic Fracturing in High-Salinity Reservoir of Fengcheng Formation in Mahu[J]. Xinjiang Oil & Gas, 19(4): 20-28
|
[35] |
PESTMAN B J, VAN MUNSTER J G, 1996. An acoustic emission study of damage development and stress-memory effects in sandstone[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(6): 585-593.
|
[36] |
RENARD F, MCBECK J, CORDONNIER B, et al., 2019. Dynamic in situ three-dimensional imaging and digital volume correlation analysis to quantify strain localization and fracture coalescence in sandstone[J]. Pure and Applied Geophysics, 176(3): 1083-1115. doi: 10.1007/s00024-018-2003-x
|
[37] |
SHANG C J, KANG Y S, DENG Z, et al., 2019. The influence mechanism of filled natural fractures on the variation law of shale permeability in loading process[J]. Journal of Geomechanics, 25(3): 382-391. (in Chinese with English abstract
|
[38] |
SHI X, PAN J, HOU Q, et al. , 2018. Micrometer-scale fractures in coal related to coal rank based on micro-ct scanning and fractal theory[J]. Fuel 212: 162–172.
|
[39] |
TAN Y L, WANG Z X, FENG X Q, et al., 2021. Structural preservation conditions analysis of oil and gas in complex structural area: A case study of structural analysis in the Well Wanjingdi-1, Anhui, China[J]. Journal of Geomechanics, 27(3): 441-452. (in Chinese with English abstract
|
[40] |
THIELE S T, GROSE L, SAMSU A, MICKLETHWAITE S, et al. , 2017. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data[J]. Solid Earth 8: 1241–1253.
|
[41] |
WANG D K, ZENG F C, WEI J P, et al., 2021. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of Petroleum Science and Engineering, 196: 108051. doi: 10.1016/j.petrol.2020.108051
|
[42] |
WANG L S, SUN D S, ZHENG X H, et al., 2017. Size effect experiment of uniaxial compressive strength of three typical rocks[J]. Journal of Geomechanics, 23(2): 327-333. (in Chinese with English abstract
|
[43] |
WANG S, XU Y, ZHANG Y B, et al., 2023. Effects of sandstone mineral composition heterogeneity on crack initiation and propagation through a microscopic analysis technique[J]. International Journal of Rock Mechanics and Mining Sciences, 162: 105307. doi: 10.1016/j.ijrmms.2022.105307
|
[44] |
WANG Y, WANG H M, ZHU H B, 2021. Preliminary study on physical experimental simulation of hydraulic fracturing[J]. Progress in Geophysics, 36(3): 1130-1137. (in Chinese with English abstract
|
[45] |
WEIBULL W, 1939. A statistical theory of the strength of materials[M]. Stockholm: Generalstabens Litografiska Anstalts Förlag: 1-29.
|
[46] |
WEN X L, KONG M W, LUO Y, et al., 2021. Study and Application of Fracturing Technology for Tight Reservoir With HPHT Closure Stress in the Southern Margin of Junggar Basin[J]. Xinjiang oil & Gas, 17(4): 15-20.
|
[47] |
WEN S S, YIN C, SHI X W, et al., 2023. Multi-scale rupture characteristics dominated by pre-existing fractures of Longmaxi shale during hydraulic fracturing in Luzhou block[J]. Progress in Geophysics, 38(5): 2172-2181. (in Chinese with English abstract
|
[48] |
WU F Q, QIAO L, GUAN S G, et al., 2021. Uniaxial compression test study on size effect of small size rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 40(5): 865-873. (in Chinese with English abstract
|
[49] |
WU H, ZHOU Y, YAO Y, et al., 2019. Imaged based fractal characterization of microfracture structure in coal[J]. Fuel, 239: 53-62. doi: 10.1016/j.fuel.2018.10.117
|
[50] |
WU N, SHI S, ZHENG S Q, et al., 2022. Formation pressure calculation of tight sandstone gas reservoir based on material balance inversion method[J]. Coal Geology & Exploration, 50(9): 115-121. (in Chinese with English abstract
|
[51] |
WU S T, YANG Z, PAN S Q, et al., 2020. Three-dimensional imaging of fracture propagation in tight sandstones of the Upper Triassic Chang 7 member, Ordos Basin, Northern China[J]. Marine and Petroleum Geology, 120: 104501. doi: 10.1016/j.marpetgeo.2020.104501
|
[52] |
XIE H P, CHEN Z D, 1989. Analysis of rock fracture micro-mechanism[J]. Journal of China Coal Society(2): 57-66. (in Chinese with English abstract
|
[53] |
XING H T, ZHANG X L, HE J X, et al., 2022. Mineral composition characteristics and petroleum geological significance of tight sandstone of Longtan Formation in Weixin area, eastern Yunnan[J]. Coal Geology & Exploration, 50(4): 52-60. (in Chinese with English abstract
|
[54] |
XIONG L F, 2021. Mechanisms and factors of the localized deformation in porous rocks[D]. Beijing: University of Science and Technology Beijing. (in Chinese with English abstract
|
[55] |
XIONG L F, 2022. Study on deformation and failure mechanism of porous rock and its influencing factors [ D ]. Beijing University of Science and Technology.
|
[56] |
YANG F, MEI W B, LI L, et al., 2023. Propagation of hydraulic fractures in thin interbedded tight sandstones[J]. Coal Geology & Exploration, 51(7): 61-71. (in Chinese with English abstract
|
[57] |
YANG S Q, SU C D, XU W Y, 2005. Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 22(4): 112-118. (in Chinese with English abstract
|
[58] |
YU X, LI G, CHEN Z, et al., 2021. Experimental study on physical and mechanical characteristics of tight sandstones in the Xujiahe Formation in western Sichuan after high-temperature exposure[J]. Journal of Geomechanics, 27(1): 1-9. (in Chinese with English abstract
|
[59] |
ZENG L B, LYU W Y, LI J, et al., 2016. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 30: 1-9. doi: 10.1016/j.jngse.2015.11.048
|
[60] |
ZHANG D M, WANG P, ZANG D G, et al., 2023. Pre-stack reservoir prediction of tight sandstone of the fifth member of Xujiahe Formation in the Wubaochang area of northeastern Sichuan[J]. Geology and Exploration, 59(6): 1356-1365. (in Chinese with English abstract
|
[61] |
ZHANG H, KANG Y L, CHEN J S, et al., 2007. Experimental study on mechanical properties of dense sandstone under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 26(S2): 4227-4231. (in Chinese with English abstract
|
[62] |
ZHANG Y F, NIU S Y, DU Z M, et al., 2020. Dynamic fracture evolution of tight sandstone under uniaxial compression in high resolution 3D X-ray microscopy[J]. Journal of Petroleum Science and Engineering, 195: 107585. doi: 10.1016/j.petrol.2020.107585
|
[63] |
ZHAO C, LIU F M, TIAN J Y, et al., 2016. Study on single crack propagation and damage evolution mechanism of rock-like materials under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 35(S2): 3626-3632. (in Chinese with English abstract
|
[64] |
ZHAO N, WANG L, ZHANG L, et al. , 2022. Mechanical properties and fracturing characteristics of tight sandstones based on granularity classification: a case study of Permian Lower Shihezi Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 44(4): 720-729, 738. (in Chinese with English abstract
|
[65] |
ZHONG J H, LIU S X, MA Y S, et al., 2015. Macro-fracture mode and micro-fracture mechanism of shale[J]. Petroleum Exploration and Development, 42(2): 242-250. (in Chinese with English abstract
|
[66] |
ZHOU J, SHEN Z Z, 2021. The effect of grain size on the mechanical properties of sandstone[J]. China Petroleum and Chemical Standard and Quality, 41(18): 81-82. (in Chinese with English abstract
|
[67] |
ZHU H Y, SONG Y J, LEI Z D, et al., 2022a. 4D-stress evolution of tight sandstone reservoir during horizontal wells injection and production: A case study of Yuan 284 block, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 49(1): 156-169. doi: 10.1016/S1876-3804(22)60012-0
|
[68] |
ZHU W W, HE X P, LI Y T, et al., 2022b. Impacts of fracture properties on the formation and development of stimulated reservoir volume: a global sensitivity analysis[J]. Journal of Petroleum Science and Engineering, 217: 110852. doi: 10.1016/j.petrol.2022.110852
|
[69] |
ZHU W W, LEI G, HE X P, et al., 2022c. Fractal and multifractal characterization of stochastic fracture networks and real outcrops[J]. Journal of Structural Geology, 155: 104508. doi: 10.1016/j.jsg.2021.104508
|
[70] |
ZHU W W, LEI G, HE X P, et al., 2022d. Can we infer the percolation status of 3D fractured media from 2D outcrops?[J]. Engineering Geology, 302: 106648. doi: 10.1016/j.enggeo.2022.106648
|
[71] |
陈鑫,马立涛,史长林,等,2022. 临兴区块致密砂岩储层水赋存状态及气层含水程度识别方法[J]. 地质与勘探,58(6):1331-1340.
|
[72] |
丁长栋,张杨,杨向同,等,2019. 致密砂岩高围压和高孔隙水压下渗透率演化规律及微观机制[J]. 岩土力学,40(9):3300-3308.
|
[73] |
樊建明,陈小东,雷征东,等,2019. 鄂尔多斯盆地致密油藏天然裂缝与人工裂缝特征及开发意义[J]. 中国石油大学学报(自然科学版),43(3):98-106. doi: 10.3969/j.issn.1673-5005.2019.03.011
|
[74] |
高晨阳,赵福海,高莲凤,等,2023. 基于构造应变分析的裂缝预测方法及其应用[J]. 地质力学学报,29(1):21-33. doi: 10.12090/j.issn.1006-6616.2022089
|
[75] |
郭宇航,2018. 粒度对红砂岩力学性质的影响规律试验研究[D]. 青岛:山东科技大学.
|
[76] |
李斌,李佳伦,王鹏,等,2023. 岩石抗剪强度参数的围压效应与定量表征[J]. 中国矿业,32(2):157-164.
|
[77] |
李世愚,和泰名,尹祥础,2010. 岩石断裂力学导论[M]. 合肥:中国科学技术大学出版社.
|
[78] |
凌建明,1993. 压缩荷载条件下岩石细观损伤特征的研究[J]. 同济大学学报,21(2):219-226.
|
[79] |
刘飞跃,杨天鸿,张鹏海,等,2018. 基于声发射的岩石破裂应力场动态反演[J]. 岩土力学,39(4):1517-1524.
|
[80] |
刘敬寿,丁文龙,肖子亢,等,2019. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展,34(6):2283-2300. doi: 10.6038/pg2019CC0290
|
[81] |
刘圣鑫,王宗秀,张林炎,等,2019. 页岩微观组构特征对复杂裂缝网络形成的影响[J]. 采矿与安全工程学报,36(2):420-428.
|
[82] |
马尚伟,魏丽,王一军,等,2022. 鄂尔多斯盆地南部盒8段致密砂岩储层微观孔隙结构表征与评价[J]. 地质与勘探,58(6):1321-1330. doi: 10.12134/j.dzykt.2022.06.016
|
[83] |
缪思钰,张海江,陈余宽,等,2019. 基于微地震定位和速度成像的页岩气水力压裂地面微地震监测[J]. 石油物探,58(2):262-271,284. doi: 10.3969/j.issn.1000-1441.2019.02.012
|
[84] |
潘丽燕,郝丽华,刘凯新,等,2023. 玛湖风城组高含盐储层水力压裂裂缝扩展规律[J]. 新疆石油天然气,19(4):20-28 doi: 10.12388/j.issn.1673-2677.2023.04.003
|
[85] |
尚春江,康永尚,邓泽,等,2019. 充填天然裂缝对页岩受载过程中渗透率变化规律影响机理分析[J]. 地质力学学报,25(3):382-391.
|
[86] |
谭元隆,王宗秀,冯兴强,等,2021. 复杂构造区油气构造保存条件分析:来自皖泾地1井的构造解析[J]. 地质力学学报,27(3):441-452. doi: 10.12090/j.issn.1006-6616.2021.27.03.040
|
[87] |
王连山,孙东生,郑秀华,等,2017. 三种典型岩石单轴抗压强度的尺寸效应试验研究[J]. 地质力学学报,23(2):327-333.
|
[88] |
王瑜,王辉明,朱海波,2021. 水力压裂物理实验模拟初探[J]. 地球物理学进展,36(3):1130-1137. doi: 10.6038/pg2021EE0258
|
[89] |
文贤利,孔明炜,罗垚,等,2021,准噶尔盆地南缘高温高压高闭合应力致密储层改造技术研究及应用[J]. 新疆石油天然气,17(4):15-20
|
[90] |
文山师,尹陈,石学文,等,2023. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征[J]. 地球物理学进展,38(5):2172-2181.
|
[91] |
伍法权,乔磊,管圣功,等,2021. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报,40(5):865-873.
|
[92] |
武男,石石,郑世琪,等,2022. 基于物质平衡反演法的致密砂岩气藏地层压力计算[J]. 煤田地质与勘探,50(9):115-121. doi: 10.12363/issn.1001-1986.21.12.0801
|
[93] |
谢和平,陈至达,1989. 岩石断裂的微观机理分析[J]. 煤炭学报(2):57-66.
|
[94] |
邢慧通,张晓丽,何金先,等,2022. 滇东威信地区龙潭组致密砂岩矿物组成特征及其油气地质意义[J]. 煤田地质与勘探,50(4):52-60. doi: 10.12363/issn.1001-1986.21.07.0403
|
[95] |
熊良锋,2021. 孔隙岩石变形破坏机制及其影响因素研究[D]. 北京:北京科技大学.
|
[96] |
熊良锋,2022. 孔隙岩石变形破坏机制及其影响因素研究[D]. 北京科技大学.
|
[97] |
杨帆,梅文博,李亮,等,2023. 薄互层致密砂岩水力压裂裂缝扩展特征研究[J]. 煤田地质与勘探,51(7):61-71. doi: 10.12363/issn.1001-1986.22.10.0788
|
[98] |
杨圣奇,苏承东,徐卫亚,2005. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学,22(4):112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022
|
[99] |
于鑫,李皋,陈泽,等,2021. 川西须家河组致密砂岩高温后的物理力学特征参数试验研究[J]. 地质力学学报,27(1):1-9.
|
[100] |
张德明,王鹏,臧殿光,等,2023. 川东北五宝场地区须五段致密砂岩叠前储层预测[J]. 地质与勘探,59(6):1356-1365. doi: 10.12134/j.dzykt.2023.06.020
|
[101] |
张浩,康毅力,陈景山,等,2007. 变围压条件下致密砂岩力学性质实验研究[J]. 岩石力学与工程学报,26(S2):4227-4231.
|
[102] |
赵程,刘丰铭,田加深,等,2016. 基于单轴压缩试验的岩石单裂纹扩展及损伤演化规律研究[J]. 岩石力学与工程学报,35(S2):3626-3632.
|
[103] |
钟建华,刘圣鑫,马寅生,等,2015. 页岩宏观破裂模式与微观破裂机理[J]. 石油勘探与开发,42(2):242-250.
|
[104] |
周婧,沈振振,2021. 粒度对砂岩力学性质的作用[J]. 中国石油和化工标准与质量,41(18):81-82.
|