Citation: | TANG H B,WU J J,ZHANG C S,et al.,2024. Debris flow hazard analysis before and after improvement of Hanjia gully control engineering at the source area of the Fujiang River[J]. Journal of Geomechanics,30(4):659−672 doi: 10.12090/j.issn.1006-6616.2023097 |
[1] |
BONIELLO M A, CALLIGARIS C, LAPASIN R, et al., 2010. Rheo-logical investigation and simulation of a debris-flow event in the Fella watershed[J]. Natural Hazards and Earth System Sciences, 10(5): 989-997. doi: 10.5194/nhess-10-989-2010
|
[2] |
BERTOLO P, WIECZOREK G F, 2005. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA[J]. Natural Hazards and Earth System Sciences, 5(6): 993-1001. doi: 10.5194/nhess-5-993-2005
|
[3] |
BOCCALI C, CALLIGARIS C, ZINI L, et al. , 2015. Comparison of scenarios after ten years: The influence of input parameters in Val Canale valley (Friuli Venezia Giulia, Italy)[M]//LOLLINO G, GIORDAN D, CROSTA G B, et al. Engineering geology for society and territory - volume 2: Landslide processes. Cham: Springer: 525-529.
|
[4] |
CHANG M, LIU Y, ZHOU C, et al., 2020. Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China[J]. Engineering Geology, 275: 105733. doi: 10.1016/j.enggeo.2020.105733
|
[5] |
CHEN P Y, YU H M, LIU Y, et al., 2013. Evaluation of debris flow risk based on independent information data fluctuation weighting method[J]. Rock and Soil Mechanics, 34(2): 449-454. (in Chinese with English abstract
|
[6] |
CONG K, LI R D, BI Y H, 2019. Benefit evaluation of debris flow control engineering based on the FLO-2D model[J]. Northwestern Geology, 52(3): 209-216. (in Chinese with English abstract
|
[7] |
CHEN H, DONG T X, LI Y, et al., 2020. Geomorphological characteristics and its response to fault activity in the upper reaches of the Fujiang Drainge Basin, China[J]. Mountain Research, 38(4): 542-551. (in Chinese with English abstract
|
[8] |
CAO P, HOU S S, CHEN L, et al., 2021. Risk assessment of mass debris flow based on numerical simulation: An example from the Malu River Basin in Min County[J]. The Chinese Journal of Geological Hazard and Control, 32(2): 100-109. (in Chinese with English abstract
|
[9] |
DU X J, SUN S Q, ZHAO Z, et al., 2016. Research on engineering control effect on Hongchun Gully debris based on FLO-2D model[J]. Earth and Environment, 44(3): 376-381. (in Chinese with English abstract
|
[10] |
FU G C, LV T Y, SUN D X, et al., 2017. Seismogenic structure of the MS7.0 earthquake on August 8, 2017 in Jiuzhaigou, Sichuan[J]. Journal of Geomechanics, 23(6): 799-809. (in Chinese with English abstract
|
[11] |
FANG Q S, TANG C, WANG Y, et al., 2016. A calculation method for predicting dynamic reserve and the total amount of material source of the debris flows in the Wenchuan meizoseismal area[J]. Journal of Disaster Prevention and Mitigation Engineering, 36(6): 1008-1014. (in Chinese with English abstract
|
[12] |
GREGORETTI C, STANCANELLI L M, BERNARD M, et al., 2019. Relevance of erosion processes when modelling in-channel gravel debris flows for efficient hazard assessment[J]. Journal of Hydrology, 568: 575-591. doi: 10.1016/j.jhydrol.2018.10.001
|
[13] |
LIU X L, TANG C, FANG Q S, et al., 2017. Hazard assessment of dam-breaking debris flow based on numerical simulation[J]. Journal of Sediment Research, 42(6): 28-34. (in Chinese with English abstract
|
[14] |
LI B X, CAI Q, SONG J, et al., 2022. Risk assessment of debris flow hazard based on FLO-2D: A case study of debris flow in Maiduo Gully[J]. Journal of Natural Disasters, 31(4): 256-265. (in Chinese with English abstract
|
[15] |
MA S Q, YANG W M, ZHANG C S, et al., 2022. Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou city[J]. Journal of Geomechanics, 28(6): 1059-1070. (in Chinese with English abstract
|
[16] |
Ministry of Land and Resources of the People's Republic of China, 2006. Specification of geological investigation for debris flow stabilization: DZ/T 0220-2006[S]. Beijing: Standards Press of China. (in Chinese)
|
[17] |
O’BRIEN J S, 2009. FLO-2D Reference manual version 2009[R]. Arizona: FLO -2D software, Inc.
|
[18] |
O’BRIEN J S, JULIEN P Y, FULLERTON W T, 1993. Two-dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering, 119(2): 244-261. doi: 10.1061/(ASCE)0733-9429(1993)119:2(244)
|
[19] |
SHANG H, WANG M X, LUO D H, et al., 2019. Single gully debris flow hazard assessment based on function assignment model and fuzzy comprehensive evaluation method[J]. The Chinese Journal of Geological Hazard and Control, 30(1): 61-69. (in Chinese with English abstract
|
[20] |
SHAO Y X, JI Y, YAN B Q, et al., 2021. Daqinggou debris flow hazard investigation and evaluation in Renhe, Panzhihua of Sichuan[J]. Journal of Agricultural Catastrophology, 11(5): 145-150. (in Chinese with English abstract
|
[21] |
TAN C, CHEN J P, LI H Z, et al., 2012. Application of weighted distance discriminant analysis in debris flow risk assessment[J]. Journal of Jilin University (Earth Science Edition), 42(6): 1847-1852. (in Chinese with English abstract
|
[22] |
TANG C, ZHOU J Q, ZHU J, et al., 1994. A study on the risk zoning of debris flow on alluvial fans by applying technology of numerical simulation[J]. Journal of Catastrophology, 9(4): 7-13. (in Chinese with English abstract
|
[23] |
TANG H, TANG C, CHEN M, et al., 2019. Numerical simulation and analysis of debris flow prevention engineering effects in strong earthquake area[J]. Bulletin of Soil and Water Conservation, 39(4): 196-201. (in Chinese with English abstract
|
[24] |
WEI B B, ZHAO Q H, HAN G, et al., 2013. Grey correlation method based hazard assessment of debris flow in quake-hit area-taking debris flows in Beichuan as an example[J]. Journal of Engineering Geology, 21(4): 525-533. (in Chinese with English abstract
|
[25] |
WU Y H, LIU K F, CHEN Y C, 2013. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study[J]. Journal of Mountain Science, 10(2): 293-304. doi: 10.1007/s11629-013-2511-1
|
[26] |
WANG N N, TANG C, 2014. Numerical simulation of Huangyang Gully debris flow Longchi town Dujiangyan city based on FLO-2D[J]. Journal of Geological Hazards and Environment Preservation, 25(1): 107-112. (in Chinese with English abstract
|
[27] |
WANG J, DING M T, HUANG Y, 2016. Debris flow motion feature and control measures of Lianhexi Valley based on FLO-2D[J]. Journal of Southwest University of Science and Technology, 31(2): 59-66. (in Chinese with English abstract
|
[28] |
WANG G F, CHEN Z L, MAO J R, et al., 2020. Debris flow risk assessment in Bailong River Basin under different engineering scenarios and rainfall frequency conditions[J]. Journal of Shandong University of Science and Technology (Natural Science), 39(5): 30-40. (in Chinese with English abstract
|
[29] |
WU J H, ZHANG C S, YANG W M, et al., 2022. Risk assessment of debris flow in Zhujiagully watershed based on entropy weight coefficient of variation fusion algorithm and FLO-2D[J]. Journal of Natural Disasters, 31(1): 81-91. (in Chinese with English abstract
|
[30] |
WANG Y Y, ZHAN Q D, HAN W L, et al., 2003. Stress-strain properties of viscous debris flow and determination of volocity parameter[J]. The Chinese Journal of Geological Hazard and Control, 14(1): 9-13. (in Chinese with English abstract
|
[31] |
YANG H L, FAN X Y, JIANG Y J, 2017. Analysis of engineering treatment effect of debris flow based on FLO-2D: Case of Yindongzi gully in Dujiangyan city[J]. Yangtze River, 48(17): 66-71, 95. (in Chinese with English abstract
|
[32] |
YAO X, ZHOU Z K, LI L J, et al., 2017. InSAR co-seismic deformation of 2017 MS7.0 Jiuzhaigou earthquake and discussions on seismogenic tectonics[J]. Journal of Geomechanics, 23(4): 507-514. (in Chinese with English abstract
|
[33] |
ZHANG C S, ZHANG Y C, MA Y S, 2003. Regional dangerous on the geological hazards of collapse, landslide and debris flow in the upper reaches of the Yellow River[J]. Journal of Geomechanics, 9(2): 143-153. (in Chinese with English abstract
|
[34] |
ZHANG H W, LIU F Z, WANG J C, et al., 2022. Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation[J]. Journal of Geomechanics, 28(2): 306-318. (in Chinese with English abstract
|
[35] |
ZHANG F X, ZHANG L Q, ZHOU J, et al., 2019. Risk assessment of debris flow in Ruoru Village, Tibet based on FLO-2D[J]. Journal of Water Resources and Water Engineering, 30(5): 95-102. (in Chinese with English abstract
|
[36] |
ZHANG X Z, TIE Y B, LI G H, et al., 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS6.8 Luding earthquake[J]. Journal of Geomechanics, 28(6): 1035-1045. (in Chinese with English abstract
|
[37] |
丛凯,李瑞冬,毕远宏,2019. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质,52(3):209-216.
|
[38] |
陈浩,董廷旭,李勇,等,2020. 涪江上游流域地貌特征及其对断裂活动性的响应[J]. 山地学报,38(4):542-551.
|
[39] |
陈鹏宇,余宏明,刘勇,等,2013. 基于独立信息数据波动赋权的泥石流危险度评价[J]. 岩土力学,34(02):449-454.
|
[40] |
曹鹏,侯圣山,陈亮,等,2021. 基于数值模拟的群发性泥石流危险性评价:以甘肃岷县麻路河流域为例[J]. 中国地质灾害与防治学报,32(2):100-109.
|
[41] |
杜雪剑,孙书勤,赵峥,等,2016. 基于FLO-2D模型的红椿沟泥石流工程治理效果研究[J]. 地球与环境,44(3):376-381.
|
[42] |
付国超,吕同艳,孙东霞,等,2017. 2017年8月8日四川九寨沟7.0级地震发震构造浅析[J]. 地质力学学报,23(6):799-809.
|
[43] |
方群生,唐川,王毅,等,2016. 汶川极震区泥石流动储量与总物源量计算方法研究[J]. 防灾减灾工程学报,36(6):1008-1014.
|
[44] |
高士麟,2021. 四川省小流域设计洪水分析及应用[J]. 四川建筑,41(5):230-233. doi: 10.3969/j.issn.1007-8983.2021.05.075
|
[45] |
刘鑫磊,唐川,方群生,等,2017. 基于数值模拟的溃决型泥石流危险性评价研究[J]. 泥沙研究,42(6):28-34.
|
[46] |
李宝幸,蔡强,宋军,等,2022. 基于FLO-2D的泥石流灾害风险评价:以麦多沟泥石流为例[J]. 自然灾害学报,31(4):256-265.
|
[47] |
马思琦,杨为民,张春山,等,2022. 兰州市寺儿沟泥石流物源特征及其危险性分析[J]. 地质力学学报,28(6):1059-1070. doi: 10.12090/j.issn.1006-6616.20222829
|
[48] |
尚慧,王明轩,罗东海,等,2019. 基于函数赋值模型与模糊综合评判法的单沟泥石流危险性评价[J]. 中国地质灾害与防治学报,30(1):61-69.
|
[49] |
邵玉祥,计扬,严步青,等,2021. 四川攀枝花仁和区大箐沟泥石流调查及危险性评价[J]. 农业灾害研究,11(5):145-150. doi: 10.3969/j.issn.2095-3305.2021.05.058
|
[50] |
唐川,周钜乾,朱静,等,1994. 泥石流堆积扇危险度分区评价的数值模拟研究[J]. 灾害学,9(4):7-13.
|
[51] |
唐海,唐川,陈明,等,2019. 强震区泥石流防治工程效果数值模拟分析[J]. 水土保持通报,39(4):196-201.
|
[52] |
谭春,陈剑平,李会中,等,2012. 加权距离判别法在泥石流危险度评价中的应用[J]. 吉林大学学报(地球科学版),42(06):1847-1852.
|
[53] |
魏斌斌,赵其华,韩刚,等,2013. 基于灰色关联法的地震灾区泥石流危险性评价:以北川县泥石流为例[J]. 工程地质学报,21(4):525-533. doi: 10.3969/j.issn.1004-9665.2013.04.007
|
[54] |
王纳纳,唐川,2014. 基于FLO-2D的都江堰市龙池镇黄央沟泥石流数值模拟[J]. 地质灾害与环境保护,25(1):107-112. doi: 10.3969/j.issn.1006-4362.2014.01.020
|
[55] |
王骏,丁明涛,黄英,2016. 基于FLO-2D的联合溪沟泥石流运动特征及防治对策[J]. 西南科技大学学报,31(2):59-66. doi: 10.3969/j.issn.1671-8755.2016.02.012
|
[56] |
王高峰,陈宗良,毛佳睿,等,2020. 不同工程情景和降雨频率工况下白龙江流域泥石流危险性评价[J]. 山东科技大学学报(自然科学版),39(5):30-40.
|
[57] |
吴季寰,张春山,杨为民,等,2022. 基于熵权变异系数融合算法和FLO-2D的朱家沟流域泥石流危险性评价[J]. 自然灾害学报,31(1):81-91.
|
[58] |
王裕宜,詹钱登,韩文亮,等,2003. 粘性泥石流体的应力应变特性和流速参数的确定[J]. 中国地质灾害与防治学报,14(1):9-13. doi: 10.3969/j.issn.1003-8035.2003.01.002
|
[59] |
杨海龙,樊晓一,姜元俊,2017. 基于FLO-2D的泥石流工程治理效果分析:以都江堰银洞子沟泥石流为例[J]. 人民长江,48(17):66-71,95.
|
[60] |
姚鑫,周振凯,李凌婧,等,2017. 2017年四川九寨沟MS7.0地震InSAR同震形变场及发震构造探讨[J]. 地质力学学报,23(4):507-514. doi: 10.3969/j.issn.1006-6616.2017.04.001
|
[61] |
张春山,张业成,马寅生,2003. 黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价[J]. 地质力学学报,9(2):143-153. doi: 10.3969/j.issn.1006-6616.2003.02.007
|
[62] |
张浩韦,刘福臻,王军朝,等,2022. 基于FLO-2D数值模拟的工布江达县城泥石流灾害危险性评价[J]. 地质力学学报,28(2):306-318.
|
[63] |
张奋翔,张路青,周剑,等,2019. 基于FLO-2D的西藏若如村泥石流危险性分析[J]. 水资源与水工程学报,30(5):95-102.
|
[64] |
张宪政,铁永波,李光辉,等,2022. 四川泸定MS6.8级地震区湾东河流域泥石流活动性预测[J]. 地质力学学报,28(6):1035-1045. doi: 10.12090/j.issn.1006-6616.20222827
|
[65] |
中华人民共和国国土资源部,2006. 泥石流灾害防治工程勘查规范:DZ/T 0220-2006[S]. 北京:中国标准出版社.
|