Citation: | XU Q R,DONG Y P,XIE Z P,et al.,2024. Tectonic and geomorphological characteristics of Laoyingshan in the eastern Sichuan-Yunnan block:Insights into the uplift and rotation of the blocks[J]. Journal of Geomechanics,30(4):535−546 doi: 10.12090/j.issn.1006-6616.2023087 |
[1] |
BERNARD T, SINCLAIR H D, GAILLETON B, et al., 2019. Lithological control on the post-orogenic topography and erosion history of the Pyrenees[J]. Earth and Planetary Science Letters, 518: 53-66. doi: 10.1016/j.jpgl.2019.04.034
|
[2] |
CAO P J, CHENG S Y, LIN H X, et al., 2021. DEM in quantitative analysis of structural geomorphology: application and prospect[J]. Journal of Geomechanics, 27(6): 949-962. (in Chinese with English abstract
|
[3] |
CASTELLTORT S, GOREN L, WILLETT S D, et al., 2012. River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain[J]. Nature Geoscience, 5(10): 744-748. doi: 10.1038/ngeo1582
|
[4] |
CHEN S F, WILSON C J L, 1996. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern margin of the Tibetan Plateau[J]. Journal of Structural Geology, 18(4): 413-430.
|
[5] |
CRUSLOCK E M, NAYLOR L A, FOOTE Y L, et al., 2010. Geomorphologic equifinality: a comparison between shore platforms in Höga Kusten and Fårö, Sweden and the Vale of Glamorgan, South Wales, UK[J]. Geomorphology, 114(1-2): 78-88. doi: 10.1016/j.geomorph.2009.02.019
|
[6] |
DAI Y, WANG X Y, WANG S L, et al., 2016. The neotectonic activity of Wanchuan catchment reflected by geomorphic indices[J]. Acta Geographica Sinica, 71(3): 412-421. (in Chinese with English abstract
|
[7] |
DUAN J X, DONG Y P, WU K, et al., 2021. Characteristics of river networks in the central Yunnan Province and their responses to tectonic activities[J]. Geotectonica et Metallogenia, 45(2): 296-307. (in Chinese with English abstract
|
[8] |
FENG J L, CUI Z J, ZHANG W, et al., 2004. Genesis of the layered landform surfaces in Dongchuan, Yunnan Province[J]. Mountain Research, 22(2): 165-174. (in Chinese with English abstract
|
[9] |
FOX M, GOREN L, MAY D A, et al., 2014. Inversion of fluvial channels for paleorock uplift rates in Taiwan[J]. Journal of Geophysical Research: Earth Surface, 119(9): 1853-1875. doi: 10.1002/2014JF003196
|
[10] |
FOX M, HERMAN F, KISSLING E, et al., 2015. Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion[J]. Geology, 43(5): 379-382. doi: 10.1130/G36411.1
|
[11] |
GAO L, 2013. Cretaceous and Paleogene paleomagnetic results from the southeastern part of eastern Himalaya syntaxis and its implication for tectonic evolution[D]. Nanjing: Nanjing University. (in Chinese with English abstract
|
[12] |
GOREN L, FOX M, WILLETT S D, 2014. Tectonics from fluvial topography using formal linear inversion: theory and applications to the Inyo Mountains, California[J]. Journal of Geophysical Research: Earth Surface, 119(8): 1651-1681. doi: 10.1002/2014JF003079
|
[13] |
GOREN L, CASTELLTORT S, KLINGER Y, 2015. Modes and rates of horizontal deformation from rotated river basins: application to the dead sea fault system in Lebanon[J]. Geology, 43(9): 843-846. doi: 10.1130/G36841.1
|
[14] |
GUAN X, PANG L C, JIANG Y T, et al., 2021. Spatial characteristics of quantitative geomorphic indices in the Taihang Mountains, north China: Implications for tectonic geomorphology[J]. Journal of Geomechanics, 27(2): 280-293. (in Chinese with English abstract
|
[15] |
GUERIT L, DOMINGUEZ S, MALAVIEILLE J, et al., 2016. Deformation of an experimental drainage network in oblique collision[J]. Tectonophysics, 693: 210-222. doi: 10.1016/j.tecto.2016.04.016
|
[16] |
HUANG K N, OPDYKE N D, PENG X J, et al., 1992. Paleomagnetic results from the Upper Permian of the eastern Qiangtang Terrane of Tibet and their tectonic implications[J]. Earth and Planetary Science Letters, 111(1): 1-10. doi: 10.1016/0012-821X(92)90164-Q
|
[17] |
JACQUES F M B, SU T, SPICER R A, et al., 2014. Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the tibetan plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 411: 208-215. doi: 10.1016/j.palaeo.2014.05.041
|
[18] |
KIRBY E, WHIPPLE K, 2001. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 29(5): 415-418. doi: 10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2
|
[19] |
KIRBY E, WHIPPLE K X, TANG W Q, et al., 2003. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B4): 2217.
|
[20] |
KIRBY E, WHIPPLE K X, 2012. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 44: 54-75. doi: 10.1016/j.jsg.2012.07.009
|
[21] |
LI S H, DENG C L, YAO H T, et al., 2013. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 118(3): 791-807. doi: 10.1002/jgrb.50129
|
[22] |
LI S H, DENG C L, DONG W, et al., 2015. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault[J]. Tectonophysics, 655: 213-226. doi: 10.1016/j.tecto.2015.06.002
|
[23] |
LI X, 2015. Study on boundary fault rupture Characterics of the Sichuan-Yunnan block at different development stages in Yunnan Province[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract
|
[24] |
LIN X D, 2009. The analysis on focal mechanism solution and tectonic stress field of middle part of Xiaojiang fault and its adjacent areas[D]. China Lanzhou: Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract
|
[25] |
LIU J, DING L, ZENG L S, et al., 2006. Large-scale terrain analysis of selected regions of the Tibetan Plateau: discussion on the origin of plateau planation surface[J]. Earth Science Frontiers, 13(5): 285-299. (in Chinese with English abstract
|
[26] |
LIU Y, HOU Z Q, TIAN S H, et al., 2015. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China: Constraints on the giant REE mineralization belt and its regional geological setting(Article)[J]. Ore Geology Reviews, 64: 554-568 doi: 10.1016/j.oregeorev.2014.03.017
|
[27] |
QIN S R, 1978. Qujing G-48-20 1/200000 regional geological survey report[R]. Beijing:National Geological Information Center. DOI:10.35080/n01.c.65702 (in Chinese with English abstract
|
[28] |
RAMSEY L A, WALKER R T, JACKSON J, 2007. Geomorphic constraints on the active tectonics of southern Taiwan[J]. Geophysical Journal International, 170(3): 1357-1372. doi: 10.1111/j.1365-246X.2007.03444.x
|
[29] |
ROGER F, CALASSOU S, LANCELOT J, et al., 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China): geodynamic implications[J]. Earth and Planetary Science Letters, 130(1-4): 201-216. doi: 10.1016/0012-821X(94)00252-T
|
[30] |
ROGER F, MALAVIEILLE J, LELOUP P H, et al., 2004. Timing of granite emplacement and cooling in the Songpan–Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0
|
[31] |
SCHOENBOHM L M, BURCHFIEL B C, LIANGZHONG C, et al., 2006. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. Geological Society of America Bulletin, 118(5-6): 672-688. doi: 10.1130/B25816.1
|
[32] |
SHEN J, WANG Y P, SONG F M, 2003. Characteristics of the active Xiaojiang fault zone in Yunnan, China: a slip boundary for the southeastward escaping Sichuan–Yunnan block of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 21(10): 1085-1096. doi: 10.1016/S1367-9120(02)00185-2
|
[33] |
SNYDER N P, WHIPPLE K X, TUCKER G E, et al., 2000. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 112(8): 1250-1263. doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2
|
[34] |
SONG F M, WANG Y P, YU W X, et al. , 1998. Research on China's active fault "Xiaojiang Active Fault Zone"[M]. Beijing: Seismological Press. (in Chinese)
|
[35] |
TAMAI M, LIU Y Y, LU L Z, et al., 2004. Palaeomagnetic evidence for southward displacement of the Chuan Dian fragment of the Yangtze block[J]. Geophysical Journal International, 158(1): 297-309. doi: 10.1111/j.1365-246X.2004.02108.x
|
[36] |
TAO Y L, ZHANG H P, GE Y K, et al., 2020. Cenozoic exhumation and fault activities across the eastern Tibet: constraints from low-temperature thermochronological data[J]. Chinese Journal of Geophysics, 63(11): 4154-4167. (in Chinese with English abstract
|
[37] |
TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
|
[38] |
TONG Y B, YANG Z Y, WANG H, et al., 2015. The Cenozoic rotational extrusion of the Chuan Dian Fragment: New paleomagnetic results from Paleogene red-beds on the southeastern edge of the Tibetan Plateau[J]. Tectonophysics, 658: 46-60. doi: 10.1016/j.tecto.2015.07.007
|
[39] |
TRAUERSTEIN M, NORTON K P, PREUSSER F, et al., 2013. Climatic imprint on landscape morphology in the western escarpment of the Andes[J]. Geomorphology, 194: 76-83. doi: 10.1016/j.geomorph.2013.04.015
|
[40] |
WANG E, BURCHFIEL B C, ROYDEN L H, et al. , 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and Central Yunnan, China[M]. Boulder: The Geological Society of America: 1-108.
|
[41] |
WANG H, YANG Z Y, 2019. Differential rotation in the western Sichuan-Yunnan block and its geological implications: New palaeomagnetic evidence from the Cretaceous red beds in the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 62(5): 1789-1808. (in Chinese with English abstract
|
[42] |
WANG N R, HAN Z Y, LI X S, et al., 2015. Tectonic uplift of Mt. Lushan indicated by the steepness indices of the river longitudinal profiles[J]. Acta Geographica Sinica, 70(9): 1516-1525. (in Chinese with English abstract
|
[43] |
WHIPPLE K X, TUCKER G E, 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. doi: 10.1029/1999JB900120
|
[44] |
WHIPPLE K X, 2001. Fluvial landscape response time: How plausible is steady-state denudation?[J]. American Journal of Science, 301(4-5): 313-325. doi: 10.2475/ajs.301.4-5.313
|
[45] |
WILLETT S D, 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts[J]. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. doi: 10.1029/1999JB900248
|
[46] |
WOBUS C W, HODGES K V, WHIPPLE K X, 2003. Has focused denudation sustained active thrusting at the Himalayan topographic front?[J]. Geology, 31(10): 861-864. doi: 10.1130/G19730.1
|
[47] |
WOBUS C W, WHIPPLE K X, HODGES K V, 2006. Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital 40Ar/39Ar thermochronology, and thermal modeling[J]. Tectonics, 25(4): TC4011.
|
[48] |
WU Z H, LONG C X, FAN T Y, et al., 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 1-31. (in Chinese with English abstract
|
[49] |
YıLDıRıM C, TÜYSÜZ O, 2017. Estimation of the long-term slip, surface uplift and block rotation along the northern strand of the North Anatolian Fault Zone: Inferences from geomorphology of the Almacık block[J]. Geomorphology, 297: 55-68. doi: 10.1016/j.geomorph.2017.08.038
|
[50] |
YOSHIOKA S, LIU Y Y, SATO K, et al., 2003. Paleomagnetic evidence for post-cretaceous internal deformation of the Chuan Dian fragment in the Yangtze block: a consequence of indentation of India into Asia[J]. Tectonophysics, 376(1-2): 61-74. doi: 10.1016/j.tecto.2003.08.010
|
[51] |
YU H Y, DONG Y P, YU L, et al. , 2023. Study on relative tectonic activity of the Puduhe fault in central Yunnan[J/OL]. Earth Science: 1-15[2023-05-15]. https://kns.cnki.net/kcms2/article/abstract?v=wQLHse-Rxfdai4mkyxezsT1y3SFE_-VUa2wV5L-87ugnPcjUGW38tgFmkZ7lKJUQDbszKpyAzH27xRlTPEZUL4zSjloi4chpSQeGWtbc9jVZ_VBfdI7JNohQJcr0D2Mg0pMWxC-2hvQ=&uniplatform=NZKPT&language=CHS. (in Chinese with English abstract
|
[52] |
ZHANG D Y, DONG Y P, JIAO Q Q, et al., 2023. Three periods of Cenozoic tectonic uplift in the southeastern margin of the Tibetan Plateau - evidence from fluvial longitudinal profile analysis[J]. Geotectonica et Metallogenia, 47(2): 308-326. (in Chinese with English abstract
|
[53] |
ZHANG H P, LIU S F, SUN Y P, et al., 2006. The acquisition of local topographic relief and its application: an SRTM-DEM analysis[J]. Remote sensing for Land & Resources, 18(1): 31-35. (in Chinese with English abstract
|
[54] |
ZHANG Y Q, CHEN W, YANG N, 2004. 40Ar/39Ar dating of shear deformation of the Xianshuihe fault zone in west Sichuan and its tectonic significance[J]. Science in China Series D: Earth Sciences, 47(9): 794-803. doi: 10.1007/BF03653272
|
[55] |
ZHANG Y Z, REPLUMAZ A, LELOUP P H, et al., 2017. Cooling history of the Gongga batholith: implications for the Xianshuihe fault and Miocene kinematics of se Tibet[J]. Earth and Planetary Science Letters, 465: 1-15. doi: 10.1016/j.jpgl.2017.02.025
|
[56] |
ZHENG L L, KONG F Q, HUANG Z H, et al., 2019. The pleistocene activity of Cangxi-Qingshuihai Fault of the west branch in the middle segment of Xiaojiang Fault[J]. Science Technology and Engineering, 19(14): 39-45. (in Chinese with English abstract
|
[57] |
ZHU R X, POTTS R, PAN Y X, et al., 2008. Paleomagnetism of the Yuanmou Basin near the southeastern margin of the Tibetan Plateau and its constraints on late Neogene sedimentation and tectonic rotation[J]. Earth and Planetary Science Letters, 272(1-2): 97-104. doi: 10.1016/j.jpgl.2008.04.016
|
[58] |
曹鹏举,程三友,林海星,等,2021. DEM在构造地貌定量分析中的应用与展望[J]. 地质力学学报,27(6):949-962. doi: 10.12090/j.issn.1006-6616.2021.27.06.077
|
[59] |
戴岩,王先彦,王胜利,等,2016. 地貌形态指数反映的青藏高原东北部宛川河流域新构造活动[J]. 地理学报,71(3):412-421. doi: 10.11821/dlxb201603005
|
[60] |
段佳鑫,董有浦,吴可,等,2021. 滇中河网特征及其对断层活动的响应[J]. 大地构造与成矿学,45(2):296-307.
|
[61] |
冯金良,崔之久,张威,等,2004. 云南东川地区层状地貌面的成因[J]. 山地学报,22(2):165-174. doi: 10.3969/j.issn.1008-2786.2004.02.006
|
[62] |
高亮,2013. 青藏高原东构造结东南缘地区白垩纪与古近纪古地磁与构造演化[D]. 南京:南京大学.
|
[63] |
关雪,逄立臣,姜雨彤,等,2021. 太行山地貌计量指标空间特征及其构造地貌意义[J]. 地质力学学报,27(2):280-293. doi: 10.12090/j.issn.1006-6616.2021.27.02.026
|
[64] |
李西,2015. 川滇地块云南地区不同发育阶段边界断裂破裂特征研究[D]. 北京:中国地震局地质研究所.
|
[65] |
林向东,2009. 小江断裂中段及其邻近地区震源机制解与构造应力场分析[D]. 兰州:中国地震局兰州地震研究所.
|
[66] |
刘静,丁林,曾令森,等,2006. 青藏高原典型地区的地貌量化分析:兼对高原“夷平面”的讨论[J]. 地学前缘,13(5):285-299. doi: 10.3321/j.issn:1005-2321.2006.05.002
|
[67] |
覃胜荣, 1978. 曲靖幅G-48-20 1/20万区域地质调查报告[R]. 北京:全国地质资料馆. DOI: 10.35080/n01.c.65702
|
[68] |
宋方敏,汪一鹏,俞维贤,等,1998. 小江活动断裂带[M]. 北京:地震出版社.
|
[69] |
陶亚玲,张会平,葛玉魁,等,2020. 青藏高原东缘新生代隆升剥露与断裂活动的低温热年代学约束[J]. 地球物理学报,63(11):4154-4167. doi: 10.6038/cjg2020O0300
|
[70] |
王恒,杨振宇,2019. 川滇地块西部差异性旋转的构造意义:青藏高原东南缘白垩纪红层古地磁学新证据[J]. 地球物理学报,62(5):1789-1808. doi: 10.6038/cjg2019L0786
|
[71] |
王乃瑞,韩志勇,李徐生,等,2015. 河流纵剖面陡峭指数对庐山构造抬升的指示[J]. 地理学报,70(9):1516-1525. doi: 10.11821/dlxb201509013
|
[72] |
吴中海,龙长兴,范桃园,等,2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报,34(1):1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002
|
[73] |
余华玉,董有浦,于良,等,2023. 滇中普渡河断裂相对构造活动性特征[J/OL]. 地球科学:1-15[2023-05-15]. https://kns.cnki.net/kcms2/article/abstract?v=wQLHse-Rxfdai4mkyxezsT1y3SFE_-VUa2wV5L-87ugnPcjUGW38tgFmkZ7lKJUQDbszKpyAzH27xRlTPEZUL4zSjloi4chpSQeGWtbc9jVZ_VBfdI7JNohQJcr0D2Mg0pMWxC-2hvQ=&uniplatform=NZKPT&language=CHS.
|
[74] |
张东越,董有浦,焦骞骞,等,2023. 青藏高原东南缘新生代的三期构造隆升—来自河流纵剖面分析的证据[J]. 大地构造与成矿学,47(2):308-326.
|
[75] |
张会平,刘少峰,孙亚平,等,2006. 基于SRTM-DEM区域地形起伏的获取及应用[J]. 国土资源遥感,18(1):31-35.
|
[76] |
郑立龙,孔凡全,黄赞慧,等,2019. 小江断裂带中段西支沧溪-清水海断层更新世活动性[J]. 科学技术与工程,19(14):39-45. doi: 10.3969/j.issn.1671-1815.2019.14.006
|