Citation: | HUO H L,CHEN Z L,ZHANG Q,et al.,2024. Quartz deformation characteristics, deformation temperature, and their constraints on pegmatites of the 509 Daobanxi lithium deposit in the West Kunlun area, Xinjiang[J]. Journal of Geomechanics,30(1):72−87 doi: 10.12090/j.issn.1006-6616.2023078 |
[1] |
BREITER K, ĎURIŠOVÁ J, DOSBABA M, 2020. Chemical signature of quartz from S- and A-type rare-metal granites-A summary[J]. Ore Geology Reviews, 125: 103674. doi: 10.1016/j.oregeorev.2020.103674
|
[2] |
BRISBIN W C, 1986. Mechanics of pegmatite intrusion[J]. American Mineralogist, 71(3-4): 644-651.
|
[3] |
CHEN M, WANG H, ZHANG X Y, et al. , 2022. Judgment of metallogenic potential of Kangxiwa pegmatite in Xinjiang: evidence from zircon U-Pb geochronology, geochemistry and Lu-Hf isotope[J]. Acta Petrologica Sinica, 38(7): 2095-2112. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.07.17
|
[4] |
FAN J J, TANG G J, WEI G J, et al. , 2020. Lithium isotope fractionation during fluid exsolution: implications for Li mineralization of the Bailongshan pegmatites in the west Kunlun, NW Tibet[J]. Lithos, 352-353: 105236. doi: 10.1016/j.lithos.2019.105236
|
[5] |
FOSSEN H, CAVALCANTE G C G, 2017. Shear zones-a review[J]. Earth-Science Reviews, 171: 434-455. doi: 10.1016/j.earscirev.2017.05.002
|
[6] |
HONG T, ZHAI M G, WANG Y J, et al. , 2023. Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study[J]. Earth Science Frontiers, 30(5): 93-105. (in Chinese with English abstract)
|
[7] |
KEYSER W, MÜLLER A, KNOLL T, et al. , 2023. Quartz chemistry of lithium pegmatites and its petrogenetic and economic implications: examples from Wolfsberg (Austria) and Moylisha (Ireland)[J]. Chemical Geology, 630: 121507. doi: 10.1016/j.chemgeo.2023.121507
|
[8] |
KOHN M J, NORTHRUP C J, 2009. Taking mylonites’ temperatures[J]. Geology, 37(1): 47-50. doi: 10.1130/G25081A.1
|
[9] |
LARSEN R B, POLVÉ M, JUVE G, 2000. Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for the formation of high-purity quartz[J]. Norges Geologiske Undersøgelse Bulletin, 436: 57-65.
|
[10] |
LI J K, LI P, CHEN Z Y, 2023. Metallogenic regularity, prediction and assessment of strategic metal mineral resources such as lithium and beryllium: preface[J]. Acta Petrologica Sinica, 39(7): 1881-1886. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.07.01
|
[11] |
LI Y, WANG W, DU X F, et al. , 2022. 40Ar/39Ar dating of muscovite of the west 509 Daoban Li-Be rare metal deposit in the west Kunlun orogenic belt and its limitation to regional mineralization[J]. Geology in China, 49(6): 2031-2033. (in Chinese with English abstract)
|
[12] |
LONDON D, KONTAK D J, 2012. Granitic pegmatites: scientific wonders and economic bonanzas[J]. Elements, 8(4): 257-261. doi: 10.2113/gselements.8.4.257
|
[13] |
LONDON D, MORGAN VI G B, 2012. The pegmatite puzzle[J]. Elements, 8(4): 263-268. doi: 10.2113/gselements.8.4.263
|
[14] |
LONDON D, 2018. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349-383. doi: 10.1016/j.oregeorev.2018.04.020
|
[15] |
MÜLLER A, IHLEN P M, SNOOK B, et al. , 2015. The chemistry of quartz in granitic pegmatites of southern Norway: petrogenetic and economic implications[J]. Economic Geology, 110(7): 1737-1757. doi: 10.2113/econgeo.110.7.1737
|
[16] |
MÜLLER A, KEYSER W, SIMMONS W B, et al. , 2021. Quartz chemistry of granitic pegmatites: implications for classification, genesis and exploration[J]. Chemical Geology, 584: 120507. doi: 10.1016/j.chemgeo.2021.120507
|
[17] |
PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin: Springer: 31-60.
|
[18] |
PLATT J P, BEHR W M, 2011. Grainsize evolution in ductile shear zones: implications for strain localization and the strength of the lithosphere[J]. Journal of Structural Geology, 33(4): 537-550. doi: 10.1016/j.jsg.2011.01.018
|
[19] |
ROTTIER B, CASANOVA V, 2021. Trace element composition of quartz from porphyry systems: a tracer of the mineralizing fluid evolution[J]. Mineralium Deposita, 56(5): 843-862. doi: 10.1007/s00126-020-01009-0
|
[20] |
RUBIN A M, 1995. Getting granite dikes out of the source region[J]. Journal of Geophysical Research: Solid Earth, 100(B4): 5911-5929. doi: 10.1029/94JB02942
|
[21] |
TAN K B, GUO Q M, GUO Y M, 2021. U-Pb age of granite from Li-beryllium polymetallic deposit and its tectonic significance in 509 Daobanxi of Hotan, Xinjiang[J]. Nonferrous Metals of Xinjiang, 44(2): 6-10. (in Chinese)
|
[22] |
TANG J L, KE Q, XU X W, et al. , 2022. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, west Kunlun[J]. Acta Petrologica Sinica, 38(3): 655-675. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.03.05
|
[23] |
TANG W C, DUAN W, ZOU L, et al. , 2022. A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China [J]. Journal of Geomechanics, 28(5): 765−792 (in Chinese with English abstract).
|
[24] |
THOMAS J B, WATSON E B, SPEAR F S, et al. , 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions to Mineralogy and Petrology, 160(5): 743-759. doi: 10.1007/s00410-010-0505-3
|
[25] |
WANG D H, DAI H Z, LIU S B, et al. , 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743-764. (in Chinese with English abstract)
|
[26] |
WANG H, LI P, MA H D, et al. , 2017. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 41(6): 1053-1062. (in Chinese with English abstract)
|
[27] |
WANG H, GAO H, ZHANG X Y, et al. , 2020. Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, west Kunlun orogenic belt, NW China[J]. Lithos, 360-361: 105449. doi: 10.1016/j.lithos.2020.105449
|
[28] |
WANG H, XU Y G, YAN Q H, et al. , 2021. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang[J]. Acta Geologica Sinica, 95(10): 3085-3098. (in Chinese with English abstract)
|
[29] |
WANG H, HUANG L, MA H D, et al. , 2023. Geological characteristics and metallogenic regularity of lithium deposits in Dahongliutan-Bailongshan area, west Kunlun, China[J]. Acta Petrologica Sinica, 39(7): 1931-1949. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.07.04
|
[30] |
WANG W, DU X F, LIU W, et al. , 2022. Geological characteristic and discussion on metallogenic age of the west 509-Daoban Li-Be rare metal deposit in the west Kunlun orogenic belt[J]. Acta Petrologica Sinica, 38(7): 1967-1980. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.07.10
|
[31] |
WARK D A, WATSON E B, 2006. TitaniQ: a titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 152(6): 743-754. doi: 10.1007/s00410-006-0132-1
|
[32] |
WEI X P, WANG H, ZHANG X Y, et al. , 2018. Petrogenesis of Triassic high-Mg diorites in western Kunlun orogen and its tectonic implication[J]. Geochimica, 47(4): 363-379. (in Chinese with English abstract)
|
[33] |
XU Y G, WANG R C, WANG C Y, et al. , 2021. Highly fractionated granites and rare-metal mineralization[J]. Lithos, 398-399: 106262. doi: 10.1016/j.lithos.2021.106262
|
[34] |
XU Z Q, ZHU W B, ZHENG B H, et al. , 2023. New ore-controlling theory of “multilayered domal granitic sheets” of the Jiajika pegmatite-type lithium deposit: the major discoveries of the “Jiajika pegmatite-type lithium deposit scientific drilling project (JSD)”[J]. Acta Geologica Sinica, 97(10): 3133-3146. (in Chinese with English abstract)
|
[35] |
YAN Q H, QIU Z W, WANG H, et al. , 2018. Age of the Dahongliutan rare metal pegmatite deposit, west Kunlun, Xinjiang (NW China): constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 100: 561-573. doi: 10.1016/j.oregeorev.2016.11.010
|
[36] |
YAN Q H, WANG H, CHI G X, et al. , 2022. Recognition of a 600-km-long Late Triassic rare metal (Li-Rb-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, Western China[J]. Economic Geology, 117(1): 213-236. doi: 10.5382/econgeo.4858
|
[37] |
YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
|
[38] |
ZHANG X Y, WANG H, YAN Q H, 2022. Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: implications for magmatic-hydrothermal evolution[J]. Ore Geology Reviews, 150: 105178. doi: 10.1016/j.oregeorev.2022.105178
|
[39] |
ZHANG Z Y, JIANG Y H, NIU H C, et al. , 2021. Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China[J]. Lithos, 380-381: 105824. doi: 10.1016/j.lithos.2020.105824
|
[40] |
ZHENG F B, WANG G G, NI P, 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits[J]. Journal of Geomechanics, 27(4): 596-613. (in Chinese with English abstract)
|
[41] |
ZHOU Q F, QIN K Z, ZHU L Q, et al. , 2023. Overview of magmatic differentiation and anatexis: insights into pegmatite genesis[J]. Earth Science Frontiers, 30(5): 26-39. (in Chinese with English abstract)
|
[42] |
ZHOU J S, WANG Q, XU Y G, et al. , 2021. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites, Chemical Geology, 584: 120484.
|
[43] |
陈谋, 王核, 张晓宇, 等, 2022. 新疆康西瓦伟晶岩的成矿潜力判断: 来自锆石U-Pb年代学、地球化学与Hf同位素证据[J]. 岩石学报, 38(7): 2095-2112. doi: 10.18654/1000-0569/2022.07.17
|
[44] |
洪涛, 翟明国, 王岳军, 等, 2023. 锂铍络合物稳定性与花岗伟晶岩中锂铍“差异跃迁”耦合关联[J]. 地学前缘, 30(5): 93-105.
|
[45] |
李建康, 李鹏, 陈振宇, 2023. 锂铍等战略性金属矿产资源成矿规律与预测评价: 前言[J]. 岩石学报, 39(7): 1881-1886.
|
[46] |
李永, 王威, 杜晓飞, 等, 2022. 西昆仑509道班西锂铍稀有金属矿白云母40Ar/39Ar定年及对区域成矿的限定[J]. 中国地质, 49(6): 2031-2033.
|
[47] |
谭克彬, 郭岐明, 郭勇明, 2021. 新疆和田509道班西锂铍多金属矿床花岗岩U-Pb年龄及其构造意义[J]. 新疆有色金属, 44(2): 6-10.
|
[48] |
唐俊林, 柯强, 徐兴旺, 等, 2022. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 38(3): 655-675.
|
[49] |
唐文春, 段威, 邹林, 等, 2022. 川西可尔因地区伟晶岩型锂矿地球化学指标定位矿体的方法 [J]. 地质力学学报, 28(5): 765−792.
|
[50] |
王登红, 代鸿章, 刘善宝, 等, 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743-764.
|
[51] |
王核, 李沛, 马华东, 等, 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053-1062.
|
[52] |
王核, 徐义刚, 闫庆贺, 等, 2021. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 95(10): 3085-3098.
|
[53] |
王核, 黄亮, 马华东, 等, 2023. 西昆仑大红柳滩—白龙山矿集区锂矿成矿特征与成矿规律初探[J]. 岩石学报, 39(7): 1931-1949.
|
[54] |
王威, 杜晓飞, 刘伟, 等, 2022. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 38(7): 1967-1980.
|
[55] |
魏小鹏, 王核, 张晓宇, 等, 2018. 西昆仑东部晚三叠世高镁闪长岩的成因及其地质意义[J]. 地球化学, 47(4): 363-379.
|
[56] |
许志琴, 朱文斌, 郑碧海, 等, 2023. 川西甲基卡伟晶岩型锂矿的“多层次穹状花岗岩席”控矿新理论: 记“川西甲基卡锂矿科学钻探”创新成果[J]. 地质学报, 97(10): 3133-3146.
|
[57] |
郑范博, 王国光, 倪培, 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 27(4): 596-613.
|
[58] |
周起凤, 秦克章, 朱丽群, 等, 2023. 花岗伟晶岩成因探讨: 岩浆分异与深熔[J]. 地学前缘, 30(5): 26-39.
|