ZHENG Ya-dong, 2005. QUANTITATIVE CHARACTERIZATION OF MECHANICAL PROPERTIES OF DEFORMATIONAL ZONES. Journal of Geomechanics, 11 (3): 197-203.
Citation: HUO H L,CHEN Z L,ZHANG Q,et al.,2024. Quartz deformation characteristics, deformation temperature, and their constraints on pegmatites of the 509 Daobanxi lithium deposit in the West Kunlun area, Xinjiang[J]. Journal of Geomechanics,30(1):72−87 doi: 10.12090/j.issn.1006-6616.2023078

Quartz deformation characteristics, deformation temperature, and their constraints on pegmatites of the 509 Daobanxi lithium deposit in the West Kunlun area, Xinjiang

doi: 10.12090/j.issn.1006-6616.2023078
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grants No. 42172258 and 42072227), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grants No. 2021YFC2901904 and 2021YFC2901805), the Science and Technology Major Project of Xinjiang Uygur Autonomous Region, China (Grant No. 2023A03002), the Joint Innovation Fund of China National Uranium Co., Ltd and State Key Laboratory of Nuclear Resources and Environment (Grant No. NRE2021-01), and the Projects of China Geological Survey (Grants No. DD20221660-3 and DZLXJK202206).
More Information
  •   Objective   The 509 Daobanxi deposit in the West Kunlun orogenic belt is a newly discovered large pegmatite-type lithium-polymetallic deposit in northwestern China. As a typical granite pegmatite lithium deposit in the region, the metallogenic characteristics and pegmatite evolution of the 509 Daobanxi deposits are of great significance for understanding the entire lithium-polymetallic mineralization process of the West Kunlun metallogenic belt. The granite pegmatites contain assemblages of plagioclase, spodumene, quartz, muscovite, etc., exhibiting strong mylonization and forming typical ductile deformation characteristics in the 509 Daobanxi deposit. Quartz, an essential mineral in granite pegmatite, is ideal for tracking pegmatite's mineralization process and studying the deformation behavior of continental rocks in long-term geological history.  Methods  To study the late-stage emplacement process of pegmatite evolution, comprehensive analyses were conducted on the quartz deformation structures measurements, fluid inclusion temperature, and quartz trace elements for the 509 Daobanxi granite pegmatites. Cathodoluminescence (CL) analysis of quartz in deformed granite pegmatite samples was performed to reveal the compositional zoning of Ti in quartz. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to analyze 64 points from samples Zk2707-9 and Zk1107-2.  Results  The minerals of spodumene and plagioclase in deformed pegmatites primarily show brittle fracturing characteristics, with the features of rigid body deformation and the muscovite presence of mica-fish. Meanwhile, the conspicuous feature is that quartz grains mainly develop dynamic recrystallization and contain subgranis. According to the microstructural characteristics of spodumene, plagioclase, and quartz, the deformation temperature of mylonitized granite pegmatite is 300~400℃. The CL images of quartz bands in the granite pegmatite samples have no apparent zoning, indicating that the Ti content reaches a relative equilibrium state in the quartz deformation stage. The LA-ICP-MS analysis shows quartz from the 509 Daobanxi granite pegmatites contains a lower concentration of Ti (1.03 ×10−6 to 7.67×10−6 and 1.04 ×10−6 to 6.75×10−6), suggesting relatively lower deformation temperatures. The Ti-in-quartz thermobarometry indicates quartz deformation temperatures ranging from 371 to 398°C and 351 to 377°C, respectively. The thermometric measurement shows that homogenization temperatures of the quartz fluid inclusions in pegmatite varied from 260℃ to 283℃, likely recording the temperature of the late stage of pegmatite evolution.  Conclusion  Comprehensive analysis shows that the 509 Daobanxi granite pegmatites underwent a period of intense ductile deformation during the emplacement process, with low temperature and high strain rate. The emplacement of pegmatite is a product of the rapid cooling process, and the grain size reduction caused by dynamic recrystallization (GBM) under high-stress and low-temperature conditions profoundly changed the rheological properties of pegmatite. The supercooling process from ~400℃ to ~260℃ (ΔT=140℃±), resulting in less rapid mineral crystalline new nuclei in pegmatites, is more conducive to the formation of coarse quartz and other mineral particles, forming the significant characteristics of granite pegmatites. [ Significance ]In fact, the emplacement process of granitic pegmatites remains a puzzle, and high-quality, accurate systematic work is needed to understand the evolution process and behavior of granite pegmatite. By studying the 509 Daobanxi granite pegmatites, we proposed that the pegmatite emplacement was a product of the rapid cooling process, and supercooling plays an essential role in pegmatite emplacement. Similar deformation characteristics are widely developed in the Tugeman lithium deposit in the Altyn Tagh area and the Jiajika lithium deposit in the western Sichuan. Although the current work is preliminary, our study provides some clues for exploring the emplacement process of granitic pegmatites.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    BREITER K, ĎURIŠOVÁ J, DOSBABA M, 2020. Chemical signature of quartz from S- and A-type rare-metal granites-A summary[J]. Ore Geology Reviews, 125: 103674. doi: 10.1016/j.oregeorev.2020.103674
    [2]
    BRISBIN W C, 1986. Mechanics of pegmatite intrusion[J]. American Mineralogist, 71(3-4): 644-651.
    [3]
    CHEN M, WANG H, ZHANG X Y, et al. , 2022. Judgment of metallogenic potential of Kangxiwa pegmatite in Xinjiang: evidence from zircon U-Pb geochronology, geochemistry and Lu-Hf isotope[J]. Acta Petrologica Sinica, 38(7): 2095-2112. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.07.17
    [4]
    FAN J J, TANG G J, WEI G J, et al. , 2020. Lithium isotope fractionation during fluid exsolution: implications for Li mineralization of the Bailongshan pegmatites in the west Kunlun, NW Tibet[J]. Lithos, 352-353: 105236. doi: 10.1016/j.lithos.2019.105236
    [5]
    FOSSEN H, CAVALCANTE G C G, 2017. Shear zones-a review[J]. Earth-Science Reviews, 171: 434-455. doi: 10.1016/j.earscirev.2017.05.002
    [6]
    HONG T, ZHAI M G, WANG Y J, et al. , 2023. Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study[J]. Earth Science Frontiers, 30(5): 93-105. (in Chinese with English abstract)
    [7]
    KEYSER W, MÜLLER A, KNOLL T, et al. , 2023. Quartz chemistry of lithium pegmatites and its petrogenetic and economic implications: examples from Wolfsberg (Austria) and Moylisha (Ireland)[J]. Chemical Geology, 630: 121507. doi: 10.1016/j.chemgeo.2023.121507
    [8]
    KOHN M J, NORTHRUP C J, 2009. Taking mylonites’ temperatures[J]. Geology, 37(1): 47-50. doi: 10.1130/G25081A.1
    [9]
    LARSEN R B, POLVÉ M, JUVE G, 2000. Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for the formation of high-purity quartz[J]. Norges Geologiske Undersøgelse Bulletin, 436: 57-65.
    [10]
    LI J K, LI P, CHEN Z Y, 2023. Metallogenic regularity, prediction and assessment of strategic metal mineral resources such as lithium and beryllium: preface[J]. Acta Petrologica Sinica, 39(7): 1881-1886. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.07.01
    [11]
    LI Y, WANG W, DU X F, et al. , 2022. 40Ar/39Ar dating of muscovite of the west 509 Daoban Li-Be rare metal deposit in the west Kunlun orogenic belt and its limitation to regional mineralization[J]. Geology in China, 49(6): 2031-2033. (in Chinese with English abstract)
    [12]
    LONDON D, KONTAK D J, 2012. Granitic pegmatites: scientific wonders and economic bonanzas[J]. Elements, 8(4): 257-261. doi: 10.2113/gselements.8.4.257
    [13]
    LONDON D, MORGAN VI G B, 2012. The pegmatite puzzle[J]. Elements, 8(4): 263-268. doi: 10.2113/gselements.8.4.263
    [14]
    LONDON D, 2018. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349-383. doi: 10.1016/j.oregeorev.2018.04.020
    [15]
    MÜLLER A, IHLEN P M, SNOOK B, et al. , 2015. The chemistry of quartz in granitic pegmatites of southern Norway: petrogenetic and economic implications[J]. Economic Geology, 110(7): 1737-1757. doi: 10.2113/econgeo.110.7.1737
    [16]
    MÜLLER A, KEYSER W, SIMMONS W B, et al. , 2021. Quartz chemistry of granitic pegmatites: implications for classification, genesis and exploration[J]. Chemical Geology, 584: 120507. doi: 10.1016/j.chemgeo.2021.120507
    [17]
    PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin: Springer: 31-60.
    [18]
    PLATT J P, BEHR W M, 2011. Grainsize evolution in ductile shear zones: implications for strain localization and the strength of the lithosphere[J]. Journal of Structural Geology, 33(4): 537-550. doi: 10.1016/j.jsg.2011.01.018
    [19]
    ROTTIER B, CASANOVA V, 2021. Trace element composition of quartz from porphyry systems: a tracer of the mineralizing fluid evolution[J]. Mineralium Deposita, 56(5): 843-862. doi: 10.1007/s00126-020-01009-0
    [20]
    RUBIN A M, 1995. Getting granite dikes out of the source region[J]. Journal of Geophysical Research: Solid Earth, 100(B4): 5911-5929. doi: 10.1029/94JB02942
    [21]
    TAN K B, GUO Q M, GUO Y M, 2021. U-Pb age of granite from Li-beryllium polymetallic deposit and its tectonic significance in 509 Daobanxi of Hotan, Xinjiang[J]. Nonferrous Metals of Xinjiang, 44(2): 6-10. (in Chinese)
    [22]
    TANG J L, KE Q, XU X W, et al. , 2022. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, west Kunlun[J]. Acta Petrologica Sinica, 38(3): 655-675. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.03.05
    [23]
    TANG W C, DUAN W, ZOU L, et al. , 2022. A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China [J]. Journal of Geomechanics, 28(5): 765−792 (in Chinese with English abstract).
    [24]
    THOMAS J B, WATSON E B, SPEAR F S, et al. , 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions to Mineralogy and Petrology, 160(5): 743-759. doi: 10.1007/s00410-010-0505-3
    [25]
    WANG D H, DAI H Z, LIU S B, et al. , 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743-764. (in Chinese with English abstract)
    [26]
    WANG H, LI P, MA H D, et al. , 2017. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 41(6): 1053-1062. (in Chinese with English abstract)
    [27]
    WANG H, GAO H, ZHANG X Y, et al. , 2020. Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, west Kunlun orogenic belt, NW China[J]. Lithos, 360-361: 105449. doi: 10.1016/j.lithos.2020.105449
    [28]
    WANG H, XU Y G, YAN Q H, et al. , 2021. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang[J]. Acta Geologica Sinica, 95(10): 3085-3098. (in Chinese with English abstract)
    [29]
    WANG H, HUANG L, MA H D, et al. , 2023. Geological characteristics and metallogenic regularity of lithium deposits in Dahongliutan-Bailongshan area, west Kunlun, China[J]. Acta Petrologica Sinica, 39(7): 1931-1949. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.07.04
    [30]
    WANG W, DU X F, LIU W, et al. , 2022. Geological characteristic and discussion on metallogenic age of the west 509-Daoban Li-Be rare metal deposit in the west Kunlun orogenic belt[J]. Acta Petrologica Sinica, 38(7): 1967-1980. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.07.10
    [31]
    WARK D A, WATSON E B, 2006. TitaniQ: a titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 152(6): 743-754. doi: 10.1007/s00410-006-0132-1
    [32]
    WEI X P, WANG H, ZHANG X Y, et al. , 2018. Petrogenesis of Triassic high-Mg diorites in western Kunlun orogen and its tectonic implication[J]. Geochimica, 47(4): 363-379. (in Chinese with English abstract)
    [33]
    XU Y G, WANG R C, WANG C Y, et al. , 2021. Highly fractionated granites and rare-metal mineralization[J]. Lithos, 398-399: 106262. doi: 10.1016/j.lithos.2021.106262
    [34]
    XU Z Q, ZHU W B, ZHENG B H, et al. , 2023. New ore-controlling theory of “multilayered domal granitic sheets” of the Jiajika pegmatite-type lithium deposit: the major discoveries of the “Jiajika pegmatite-type lithium deposit scientific drilling project (JSD)”[J]. Acta Geologica Sinica, 97(10): 3133-3146. (in Chinese with English abstract)
    [35]
    YAN Q H, QIU Z W, WANG H, et al. , 2018. Age of the Dahongliutan rare metal pegmatite deposit, west Kunlun, Xinjiang (NW China): constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 100: 561-573. doi: 10.1016/j.oregeorev.2016.11.010
    [36]
    YAN Q H, WANG H, CHI G X, et al. , 2022. Recognition of a 600-km-long Late Triassic rare metal (Li-Rb-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, Western China[J]. Economic Geology, 117(1): 213-236. doi: 10.5382/econgeo.4858
    [37]
    YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
    [38]
    ZHANG X Y, WANG H, YAN Q H, 2022. Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: implications for magmatic-hydrothermal evolution[J]. Ore Geology Reviews, 150: 105178. doi: 10.1016/j.oregeorev.2022.105178
    [39]
    ZHANG Z Y, JIANG Y H, NIU H C, et al. , 2021. Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China[J]. Lithos, 380-381: 105824. doi: 10.1016/j.lithos.2020.105824
    [40]
    ZHENG F B, WANG G G, NI P, 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits[J]. Journal of Geomechanics, 27(4): 596-613. (in Chinese with English abstract)
    [41]
    ZHOU Q F, QIN K Z, ZHU L Q, et al. , 2023. Overview of magmatic differentiation and anatexis: insights into pegmatite genesis[J]. Earth Science Frontiers, 30(5): 26-39. (in Chinese with English abstract)
    [42]
    ZHOU J S, WANG Q, XU Y G, et al. , 2021. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites, Chemical Geology, 584: 120484.
    [43]
    陈谋, 王核, 张晓宇, 等, 2022. 新疆康西瓦伟晶岩的成矿潜力判断: 来自锆石U-Pb年代学、地球化学与Hf同位素证据[J]. 岩石学报, 38(7): 2095-2112. doi: 10.18654/1000-0569/2022.07.17
    [44]
    洪涛, 翟明国, 王岳军, 等, 2023. 锂铍络合物稳定性与花岗伟晶岩中锂铍“差异跃迁”耦合关联[J]. 地学前缘, 30(5): 93-105.
    [45]
    李建康, 李鹏, 陈振宇, 2023. 锂铍等战略性金属矿产资源成矿规律与预测评价: 前言[J]. 岩石学报, 39(7): 1881-1886.
    [46]
    李永, 王威, 杜晓飞, 等, 2022. 西昆仑509道班西锂铍稀有金属矿白云母40Ar/39Ar定年及对区域成矿的限定[J]. 中国地质, 49(6): 2031-2033.
    [47]
    谭克彬, 郭岐明, 郭勇明, 2021. 新疆和田509道班西锂铍多金属矿床花岗岩U-Pb年龄及其构造意义[J]. 新疆有色金属, 44(2): 6-10.
    [48]
    唐俊林, 柯强, 徐兴旺, 等, 2022. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 38(3): 655-675.
    [49]
    唐文春, 段威, 邹林, 等, 2022. 川西可尔因地区伟晶岩型锂矿地球化学指标定位矿体的方法 [J]. 地质力学学报, 28(5): 765−792.
    [50]
    王登红, 代鸿章, 刘善宝, 等, 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743-764.
    [51]
    王核, 李沛, 马华东, 等, 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053-1062.
    [52]
    王核, 徐义刚, 闫庆贺, 等, 2021. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 95(10): 3085-3098.
    [53]
    王核, 黄亮, 马华东, 等, 2023. 西昆仑大红柳滩—白龙山矿集区锂矿成矿特征与成矿规律初探[J]. 岩石学报, 39(7): 1931-1949.
    [54]
    王威, 杜晓飞, 刘伟, 等, 2022. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 38(7): 1967-1980.
    [55]
    魏小鹏, 王核, 张晓宇, 等, 2018. 西昆仑东部晚三叠世高镁闪长岩的成因及其地质意义[J]. 地球化学, 47(4): 363-379.
    [56]
    许志琴, 朱文斌, 郑碧海, 等, 2023. 川西甲基卡伟晶岩型锂矿的“多层次穹状花岗岩席”控矿新理论: 记“川西甲基卡锂矿科学钻探”创新成果[J]. 地质学报, 97(10): 3133-3146.
    [57]
    郑范博, 王国光, 倪培, 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 27(4): 596-613.
    [58]
    周起凤, 秦克章, 朱丽群, 等, 2023. 花岗伟晶岩成因探讨: 岩浆分异与深熔[J]. 地学前缘, 30(5): 26-39.
  • Relative Articles

    WU Xunda, LIAO Jin, SUN Wenzhao, LIU Ping, LI Chunlei. 2021: Natural gas distribution and reservoir-forming law of the Yinggehai Basin, China. Journal of Geomechanics, 27(6): 963-974. doi: 10.12090/j.issn.1006-6616.2021.27.06.078
    LIU Jiangtao, ZHAO Jie, WU Fafu. 2021: Review and prospect of structural equation modeling in geoscience data modeling and analysis. Journal of Geomechanics, 27(3): 350-364. doi: 10.12090/j.issn.1006-6616.2021.27.03.032
    HUANG Qiwen, LI Awei. 2019: STRESS INDUCED CHANGES IN THE ELECTRICAL-MAGNETIC PROPERTIES OF ROCK CORESHUANG. Journal of Geomechanics, 25(4): 453-458. doi: 10.12090/j.issn.1006-6616.2019.25.04.042
    LI Hongru, ZHANG Pan, WANG Shenni, ZHAO Huapeng. 2018: A STUDY OF THE INFLUENCE OF RAINFALL ON SLOPE STABILITY ALONG THE TENDENCY OF COAL MEASURE STRATA. Journal of Geomechanics, 24(6): 836-848. doi: 10.12090/j.issn.1006-6616.2018.24.06.087
    ZHANG Xiaochao, PEI Xiangjun, JIA Jun, SUN Pingping. 2018: EXPERIMENTAL STUDY ON THE LATERAL FLOW SLIDE MECHANISM OF SATURATED LOESS MASS. Journal of Geomechanics, 24(5): 730-736. doi: 10.12090/j.issn.1006-6616.2018.24.05.075
    LI Wei, CHEN Shuping, YUN Jinbiao, LIU Zhina, LIU Shilin, JI Hongying. 2018: FORMATION MECHANISM OF STEEPLY INCLINED REVERSE FAULT: TAKE THE SERIKBUYA FAULT IN TARIM BASIN AS AN EXAMPLE. Journal of Geomechanics, 24(1): 1-8. doi: 10.12090/j.issn.1006-6616.2018.24.01.001
    HE Kai, GAO Yang, WANG Wenpei, ZHU Sainan. 2018: PHYSICAL MODEL EXPERIMENTAL STUDY ON DEFORMATION AND FAILURE OF OVERLYING ROCK SLOPE UNDER THE CONDITION OF STEEP COAL SEAM MINING. Journal of Geomechanics, 24(3): 399-406. doi: 10.12090/j.issn.1006-6616.2018.24.03.041
    ZHOU Xiao-kang, GUO Jian-hua. 2014: PETROLEUM ACCUMULATION CHARACTERISTICS AND PRESERVATION CONDITIONS OF LIANYUAN SAG IN THE CENTRAL HUNAN. Journal of Geomechanics, 20(3): 222-229.
    HU Hui. 2005: FORMATION CONDITIONS AND DISTRIBUTION CHARACTE-RISTICS OF LITHOLOGICAL RESERVOIRS IN THE QIANJIANG SUBBASIN. Journal of Geomechanics, 11(1): 67-73.
    KUANG Hong-wei, PENG De-tang, LI Nan. 2001: THE ACCUMULATIVE CONDITIONS OF THE MIDDLE ORDOVICIAN OIL AND GAS IN LUNNAN AREA, TARIM BASIN. Journal of Geomechanics, 7(2): 161-166,103.
    XU Zenghe, XU Xiaohe. 1999: LIQUID-SOLID COUPLED PROBLEM OF RADIAL FLOW THROUGH POROUS MEDIA UNDER GENERAL PLAIN STRESSCODITION. Journal of Geomechanics, 5(1): 14-18.
    WANG Lianjie, WANG Wei, ZHANG Lirong, YUAN Jiayin. 1999: FUNDAMENTAL EQUATION AND FINITE ELEMENT MODELING FOR OIL AND GAS MIGRATION DRIVED BY CRUSTAL STRESS. Journal of Geomechanics, 5(1): 29-34.
    Chen Bailin, Li Yusheng, Dong Faxian, Liu Jianmin, Liu Youxun, Zhang Yijun, Xu Shunshan, Li Jianzhong. 1998: STUDY ON THE STRUCTURES OF THE ZONGSHUBAN AREA, CHENXIAN,HUNAN PROVINCE AND ORE CONTROLLING CONDITIONS. Journal of Geomechanics, 4(2): 75-82.
    Song Quanyou, Chen Qinghua, Chen Shuping. 1998: CHARACTERISTICS OF CAP ROCKS IN CUOQIN BASIN,TIBET. Journal of Geomechanics, 4(3): 64-69.
  • Cited by

    Periodical cited type(8)

    1. Jia-yun Wang,Zi-long Wu,Xiao-ya Shi,Long-wei Yang,Rui-ping Liu,Na Lu. Exploring mechanism of hidden, steep obliquely inclined bedding landslides using a 3DEC model:A case study of the Shanyang landslide in Shaanxi Province, China. China Geology. 2024(02): 303-314 .
    2. 蒲进,张丙先,任志勇,高志林. 基于河道演变的边坡变形破坏机制分析. 水利水电快报. 2024(06): 33-37 .
    3. 陈达,许强,郑光,王卓,蒋金晶,刘建强. 顺层边坡溃曲变形形成条件及其与层面倾角的关系. 科学技术与工程. 2021(07): 2616-2625 .
    4. 唐雨生,苏培东,马云长,戚宗轲. 含软弱夹层的顺层岩质滑坡渐进破坏研究. 自然灾害学报. 2021(06): 155-165 .
    5. 陈笑楠,张慧梅,周洪文. 层状边坡岩体的屈曲和溃屈性态研究. 水文地质工程地质. 2020(02): 141-147 .
    6. 杨海龙,樊晓一,裴向军. 基于离散元法的偏转型滑坡运动堆积特征分析. 长江科学院院报. 2020(02): 106-111+118 .
    7. 丁戈媛,胡新丽. 大奔流顺层岩质滑坡溃屈型破坏力学机制研究. 地质科技通报. 2020(02): 186-190 .
    8. 叶功勤,曹函,高强,张政,王天一. 颗粒配比对岩石力学特征影响的数值模拟研究. 地质力学学报. 2019(06): 1129-1137 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.7 %FULLTEXT: 18.7 %META: 78.0 %META: 78.0 %PDF: 3.4 %PDF: 3.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %United States: 1.1 %United States: 1.1 %中卫: 0.4 %中卫: 0.4 %中山: 0.4 %中山: 0.4 %北京: 4.1 %北京: 4.1 %厦门: 0.4 %厦门: 0.4 %天津: 0.4 %天津: 0.4 %宜昌: 0.4 %宜昌: 0.4 %广州: 0.4 %广州: 0.4 %张家口: 10.8 %张家口: 10.8 %昆明: 4.9 %昆明: 4.9 %杭州: 0.7 %杭州: 0.7 %武威: 0.4 %武威: 0.4 %武汉: 1.9 %武汉: 1.9 %湖州: 1.1 %湖州: 1.1 %玉林: 0.4 %玉林: 0.4 %芒廷维尤: 4.5 %芒廷维尤: 4.5 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.7 %苏州: 0.7 %衢州: 0.4 %衢州: 0.4 %西宁: 60.8 %西宁: 60.8 %运城: 0.4 %运城: 0.4 %重庆: 0.4 %重庆: 0.4 %银川: 0.4 %银川: 0.4 %长沙: 0.4 %长沙: 0.4 %其他United States中卫中山北京厦门天津宜昌广州张家口昆明杭州武威武汉湖州玉林芒廷维尤芝加哥苏州衢州西宁运城重庆银川长沙

Catalog

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (652) PDF downloads(108) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return