Volume 27 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LIU Jiangtao, ZHAO Jie, WU Fafu, 2021. Review and prospect of structural equation modeling in geoscience data modeling and analysis. Journal of Geomechanics, 27 (3): 350-364. DOI: 10.12090/j.issn.1006-6616.2021.27.03.032
Citation: LIU Jiangtao, ZHAO Jie, WU Fafu, 2021. Review and prospect of structural equation modeling in geoscience data modeling and analysis. Journal of Geomechanics, 27 (3): 350-364. DOI: 10.12090/j.issn.1006-6616.2021.27.03.032

Review and prospect of structural equation modeling in geoscience data modeling and analysis

doi: 10.12090/j.issn.1006-6616.2021.27.03.032
Funds:

the Geological Survey Projects of China Geological Survey DD20201153

the Geological Survey Projects of China Geological Survey DD20190443

Foreign Aid Project of the Ministry of Commerce of China 201426

More Information
  • Received: 2021-01-20
  • Revised: 2021-03-20
  • Published: 2021-06-28
  • Structural equation modeling (SEM) is a method of establishing, estimating and testing causality. It can replace multiple regression, path analysis, factor analysis, covariance analysis and other methods to clearly analyze the effect of individual indicators on the overall and the relationship between individual indicators. SEM is a multivariate statistical modeling technology mainly applied to confirmatory factor analysis model. Due to the advantages of measuring latent variable scores through observable variables and analyzing the synergistic effects between latent variables using different sub-models, SEM is widely used in data modeling and analysis in the fields of psychology, behavior, and marketing. It provides a mature application path of proposing the concept-designing the model-obtaining data-verifying the model. Geoscience data modeling technology has always been one of the hotspots in geoscience research, the purpose of which is to extract valuable model structures and latent variables from massive, multi-dimensional, high-dimensional, and multi-temporal geo-data, and to study different geo-variables and interactive relationship between latent variables so as to support related applications and research such as environmental governance, disaster prevention, resource prospecting, and ecological evaluation. With the changes in the scale of geoscience data and the continuous development of modeling tools, the geoscience data modeling have gradually changed from sampling to full-sample, the method from under the guidance of geological models to unconstrained/weak-constrained modeling, the basis from variable causality to variable correlation, and the complexity from single model/single process to comprehensive multi-model/multi-process. SEM is a comprehensive modeling method, which can include multiple analysis techniques such as factor analysis, latent variable estimation, path analysis, etc. This multi-level, multi-branch modeling method combines the characteristics of knowledge-driven modeling and data-driven modeling. SEM generally faces the following three challenges, also three changes, in the modeling of geoscience data: from a method mainly oriented to confirmatory modeling and analysis to an exploratory modeling and analysis method; from a construction with complete geological model constraints to a weak model/unconstrained geological data modeling method; from a modeling of statistical variables without spatial attributes to a modeling of spatial statistical variables. This puts forward new requirements on the model itself and the method of data modeling. In response to the above three issues, this article reviews the concept and development of SEM, and introduces three application cases of SEM in geological data modeling.One is using lake sediment geochemical data to extract mineralization endogenous factors in gold mines which is modeled under weak constraints.The second is using the comprehensive parameter optimization method of SEM to weaken and correct CI problem of weight of evidence in the calculation of the posterior probability of gold prospecting by matching the posterior probability and the observation posterior probability. The third is using SEM to study the forest protection strategy of the Magdalena watershed in Mexico.By numbering the forest blocks in different regions, the spatial distribution of the data is transformed into traditional statistical variables without spatial attributes, and the impact of different environmental strategies on forest protection is analyzed.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AGTERBERG F P, 1989. Systematic approach to dealing with uncertainty of geoscience information retrieval in mineral exploration[C]//Proceedings of the 21st international symposium on applications of computers and operations research in the mineral industry. Las Vegas: AIME: 165-178.
    AGTERBERG F P, BONHAM-CARTER G F, 1990. Deriving weights of evidence from geoscience contour maps for the prediction of discrete events[C]//Proceedings of the 22nd APCOM symposium. Berlin, Germany: Technical University of Berlin.
    ALI K, CHENG Q M, CHEN Z J, 2007. Multifractal power spectrum and singularity analysis for modelling stream sediment geochemical distribution patterns to identify anomalies related to gold mineralization in Yunnan Province, South China[J]. Geochemistry: Exploration, Environment, Analysis, 7(4): 293-301. doi: 10.1144/1467-7873/06-116
    ANDERSON M J, 2014. Permutational multivariate analysis of variance (PERMANOVA)[M]//Wiley StatsRef: statistics reference online. 1-15.
    ANDERSON T W, RUBIN H, 1949. Estimation of the parameters of a single equation in a complete system of stochastic equations[J]. Annals of Mathematical Statistics, 20(1): 46-63. doi: 10.1214/aoms/1177730090
    ANDERSON T W, RUBIN H, 1950. The asymptotic properties of estimates of the parameters of a single equation in a complete system of stochastic equations[J]. The Annals of Mathematical Statistics, 21(4): 570-582. doi: 10.1214/aoms/1177729752
    ATEKWANA E A, SLATER L D, 2009. Biogeophysics: A new frontier in Earth science research[J]. Reviews of Geophysics, 47(4): RG4004.
    BANDEEN-ROCHE K, MIGLIORETTI D L, ZEGER S L, et al., 1997. Latent variable regression for multiple discrete outcomes[J]. Journal of the American Statistical Association, 92(440): 1375-1386. doi: 10.1080/01621459.1997.10473658
    BARILLARI M R, BASTIANI L, LECHIEN J R, et al., 2021. A structural equation model to examine the clinical features of mild-to-moderate COVID-19: A multicenter Italian study[J]. Journal of Medical Virology, 93(2): 983-994. doi: 10.1002/jmv.26354
    BASMANN R L, 1957. A generalized classical method of linear estimation of coefficients in a structural equation[J]. Econometrica, 25(1): 77-83. doi: 10.2307/1907743
    BOLLEN K, LENNOX R, 1991. Conventional wisdom on measurement: A structural equation perspective[J]. Psychological Bulletin, 110(2): 305-314. doi: 10.1037/0033-2909.110.2.305
    BOLLEN K A, PEARL J, 2013. Eight myths about causality and structural equation models[M]//MORGAN S. Handbook of causal analysis for social research. Dordrecht: Springer: 301-328.
    BONHAM-CARTER G F, AGTERBERG F P, WRIGHT D F, 1988. Integration of geological datasets for gold exploration in Nova Scotia[J]. Photogrammetric Engineering and Remote Sensing, 54(11): 1585-1592.
    BONHAM-CARTER G F, AGTERBERG F P, WRIGHT D F, 1989. Weights of evidence modeling: a new approach to mapping mineral potential[M]//AGTERBERG F P, BONHAM-CARTER G F. Statistical applications in the earth sciences. Ottawa: Canadian Government Publishing Centre: 171-183.
    BONHAM-CARTER G F, 2014. Geographic information systems for geoscientists. Modelling with GIS[M]. Tarrytown, N. Y. : Elsevier Science Ltd.
    BROWNE M W, ARMINGER G, 1995. Specification and estimation of mean-and covariance-structure models[M]//ARMINGER G, CLOGG C C, SOBEL M E. Handbook of statistical modeling for the social and behavioral sciences. Boston, MA: Springer: 185-249.
    ÇAKIT E, OLAK A J, KARWOWSKI W, et al., 2020. Assessing safety at work using an adaptive neuro-fuzzy inference system (ANFIS) approach aided by partial least squares structural equation modeling (PLS-SEM)[J]. International Journal of Industrial Ergonomics, 76: 102-925.
    CHEN G X, TIAN Y P, ZHANG X L, et al., 2019. Rapid construction and uncertainty analysis of 3D geological models based on exploration sections[J]. Geological Science and Technology Information, 38(2): 275-280. (in Chinese with English abstract)
    CHENG Q, 1994. Multifractal modelling and spatial analysis with GIS: Gold potential estimation in the Mitchell-Sulphurets area, northwestern British Columbia[D]. Ottawa: University of Ottawa (Canada).
    CHENG Q M, 1999. Spatial and scaling modelling for geochemical anomaly separation[J]. Journal of Geochemical Exploration, 65(3): 175-194. doi: 10.1016/S0375-6742(99)00028-X
    CHENG Q M, 2007a. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 32(1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
    CHENG Q M, 2007b. Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains[J]. Nonlinear Processes in Geophysics, 14(3): 293-303. doi: 10.5194/npg-14-293-2007
    CHENG Q M, 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 40(5): 503-532. doi: 10.1007/s11004-008-9172-6
    CHENG Q M, BONHAM-CARTER G, WANG W L, et al., 2011. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China[J]. Computers & Geosciences, 37(5): 662-669.
    CHENG Q M, 2012a. Ideas and methods for mineral resources integrated prediction in covered areas[J]. Earth Science-Journal of China University of Geosciences, 37(6): 1109-1125. (in Chinese with English abstract)
    CHENG Q M, 2012b. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J]. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007
    CHENG Q M, 2014. Vertical distribution of elements in regolith over mineral deposits and implications for mapping geochemical weak anomalies in covered areas[J]. Geochemistry: Exploration, Environment, Analysis, 14(3): 277-289. doi: 10.1144/geochem2012-174
    CHIN W W, 1998. The partial least squares approach to structural equation modeling[M]//MARCOULIDES M A. Modern methods for business research. Mahwah, NJ: Lawrence Erlbaum Associates: 295-336.
    CHRIST C F, 1994. The Cowles Commission's contributions to econometrics at Chicago, 1939-1955[J]. Journal of Economic Literature, 32(1): 30-59.
    DEL CAMPO A G, 2016. GIS in environmental assessment: a review of current issues and future needs[J]. Journal of Environmental Assessment Policy and Management (JEAPM), 14(1): 1-23.
    FAREBROTHER R W, 1999. A class of statistical estimators related to principal components[J]. Linear Algebra and Its Applications, 289(1-3): 121-126. doi: 10.1016/S0024-3795(97)10006-4
    FERRERO R C, KOLAK J J, BILLS D J, et al. 2013. U.S. Geological Survey Energy and Minerals science strategy: A resource lifecycle approach (1383D)[R]. Reston, VA: U.S. Geological Survey.
    FORNELL C, WERNERFELT B, 1987. Corporate consumer affairs departments: retrospect and prospect, & Quot[M]//MAYNES E S. Research in the consumer interest: the frontier. Ann Arbor, MI: Association for Consumer Research: 337-346.
    HART J K, MARTINEZ K, 2006. Environmental sensor networks: A revolution in the earth system science?[J]. Earth-Science Reviews, 78(3-4): 177-191. doi: 10.1016/j.earscirev.2006.05.001
    HAIR JR J F, HULT G T M, RINGLE C M, et al., 2016. A primer on partial least squares structural equation modeling (PLS-SEM)[M]. 2nd ed. Thousand Oaks, CA: Sage Publications Inc.
    HAIR JR J F, PAGE M, BRUNSVELD N, 2019. Essentials of business research methods[M]. 4th ed. New York: Routledge.
    JAAFARI S, SHABANI A A, MOEINADDINI M, et al., 2020. Applying landscape metrics and structural equation modeling to predict the effect of urban green space on air pollution and respiratory mortality in Tehran[J]. Environmental Monitoring and Assessment, 192(7): 412. doi: 10.1007/s10661-020-08377-0
    JENSEN J R, 2007. Remote sensing of the environment: An earth resource perspective[M]. 2nd ed. Singapore: Pearson Education India.
    JÖRESKOG K G, 1970. A general method for analysis of covariance structures[J]. Biometrika, 57(2): 239-251. doi: 10.1093/biomet/57.2.239
    KOOPMANS T C, HOOD W C, 1953. The estimation of simultaneous linear economic relationships[M]//HOOD W C, KOOPMANS T C. Cowles commission monograph no. 14: studies in econometric method. New York: J. Wiley and Sons: 112-199.
    LEE S Y, SHI J Q, 2001. Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data[J]. Biometrics, 57(3): 787-794. doi: 10.1111/j.0006-341X.2001.00787.x
    LIU G, WU C L, HE Z W, et al., 2020. Data model for geological spatiotemporal big data expression and storage management[J]. Bulletin of Geological Science and Technology, 39(1): 164-174. (in Chinese with English abstract)
    LIU J T, CHENG Q M, WANG J G, 2015. Identification of geochemical factors in regression to mineralization endogenous variables using structural equation modeling[J]. Journal of Geochemical Exploration, 150: 125-136. doi: 10.1016/j.gexplo.2014.12.021
    LIU J T, WU F F, WANG J X, et al., 2017. Design of a geochemical data processing model based on ArcGIS model builder and its application in morocco geochemical mapping project[J]. Geological Science and Technology Information, 36(5): 1-6. (in Chinese with English abstract)
    LIU J T, CHENG Q M, 2019. A modified weights-of-evidence method for mineral potential prediction based on structural equation modeling[J]. Natural Resources Research, 28(3): 1037-1053. doi: 10.1007/s11053-018-9435-y
    LOHMÖLLER J B, 2013. Latent variable path modeling with partial least squares[M]. Springer Science & Business Media.
    MCARDLE J J, KADLEC K M, 2013. Structural equation models[M]. Oxford: The Oxford Handbook of Quantitative Methods, 2: 295-337.
    MUTHÉN B, 1984. A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators[J]. Psychometrika, 49(1): 115-132. doi: 10.1007/BF02294210
    OSMAN A R, SOHEL-UZ-ZAMAN A S, ASHRAF M A, et al., 2020. Vindicating service quality of education through Structural Equation Modeling (SEM): international students' perspective[J]. International Journal of Higher Education, 9(3): 158-172. doi: 10.5430/ijhe.v9n3p158
    PEARL J, 2009. Causal inference in statistics: An overview[J]. Statistics Surveys, 3: 96-146.
    PLOHL N, MUSIL B, 2021. Modeling compliance with COVID-19 prevention guidelines: the critical role of trust in science[J]. Psychology, Health & Medicine, 26(1): 1-12.
    SAMMEL M D, RYAN L M, 1996. Latent variable models with fixed effects[J]. Biometrics, 52(2): 650-663. doi: 10.2307/2532903
    SANCHEZ B N, BUDTZ-JØRGENSEN E, RYAN L M, et al., 2005. Structural equation models: a review with applications to environmental epidemiology[J]. Journal of the American Statistical Association, 100(472): 1443-1455. doi: 10.1198/016214505000001005
    SANTIBÁÑEZ-ANDRADE G, CASTILLO-ARGVERO S, VEGA-PEÑA E V, et al., 2015. Structural equation modeling as a tool to develop conservation strategies using environmental indicators: The case of the forests of the Magdalena river basin in Mexico City[J]. Ecological Indicators, 54: 124-136. doi: 10.1016/j.ecolind.2015.02.022
    SARGAN J D, 1958. The instability of the Leontief dynamic model[J]. Econometrica, 26(3): 381-392. doi: 10.2307/1907618
    SUN D, CHEN Q, ZHANG Y, 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine[J]. Journal of Geomechanics, 26(1): 33-38. (in Chinese with English abstract)
    THEIL H, 1953. Repeated least squares applied to complete equation systems[M]. The Hague: Central Planning Bureau (Mimeo).
    WANG W L, CHENG Q M, 2008. Mapping mineral potential by combining multi-scale and multi-source geo-information[C]//IGARSS 2008-2008 IEEE international geoscience and remote sensing symposium. Boston, MA, USA: IEEE.
    WANG Y A, RHEMTULLA M, 2021. Power analysis for parameter estimation in structural equation modeling: A discussion and tutorial[J]. Advances in Methods and Practices in Psychological Science, 4(1). doi: 10.1177/2515245920918253.
    WOLD H, 1966. Estimation of principal components and related models by iterative least squares[M]//KRISHNAJAH P R. Multivariate analysis. NewYork: Academic Press: 391-420.
    WRIGHT S, 1918. On the nature of size factors[J]. Genetics, 3(4): 367-374. doi: 10.1093/genetics/3.4.367
    WRIGHT S, 1920. The relative importance of heredity and environment in determining the piebald pattern of guinea-pigs[J]. Proceedings of the National Academy of Sciences of the United States of America, 6(6): 320-332. doi: 10.1073/pnas.6.6.320
    WRIGHT S, 1921a. Systems of mating. I. The biometric relations between parent and offspring[J]. Genetics, 6(2): 111-123. doi: 10.1093/genetics/6.2.111
    WRIGHT S, 1921b. Systems of mating. II. The effects of inbreeding on the genetic composition of a population[J]. Genetics, 6(2): 124-143. doi: 10.1093/genetics/6.2.124
    WU C L, LIU G, WANG L Z, et al., 2020. Thinking and methods of intelligent supervision of urban geological environment based on big data[J]. Bulletin of Geological Science and Technology, 39(1): 157-163. (in Chinese with English abstract)
    XIN L, LIU X X, ZHANG B, 2021. Land surface temperature retrieval and geothermal resources prediction by remote sensing image: A case study in the Shijiazhuang area, Hebei province[J]. Journal of Geomechanics, 27(1): 40-51. (in Chinese with English abstract)
    IAO H, ZHANG Y, KONG D S, et al., 2020. The effects of social support on sleep quality of medical staff treating patients with coronavirus disease 2019 (COVID-19) in January and February 2020 in China[J]. Medical Science Monitor, 26: e923549-923541.
    YANG F, WANG H, HUANG B, et al., 2019. Study on the stress sensitivity and seepage characteristics of tight sandstone based on CT scanning[J]. Journal of Geomechanics, 25(4): 475-482. (in Chinese with English abstract)
    YUAN K H, BENTLER P M, 1997. Mean and covariance structure analysis: Theoretical and practical improvements[J]. Journal of the American Statistical Association, 92(438): 767-774. doi: 10.1080/01621459.1997.10474029
    YUAN K H, BENTLER P M, 2000. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data[J]. Sociological Methodology, 30(1): 165-200. doi: 10.1111/0081-1750.00078
    ZHANG D, LI J C, WU Z H, et al., 2021. Using terrestrial LiDAR to accurately measure the micro-geomorphologic geometry of active fault: A case study of fault scarp on the Maoyaba fault zone[J]. Journal of Geomechanics, 27(1): 63-72. (in Chinese with English abstract)
    ZHAO F S, HUA S, WU H, et al., 2021. Quantitative prediction of the undiscovered epithermal gold (silver) mineral resources in Sumatra, Indonesia[J]. Bulletin of Geological Science and Technology, 40(1): 119-131. (in Chinese with English abstract)
    陈国旭, 田宜平, 张夏林, 等, 2019. 基于勘探剖面的三维地质模型快速构建及不确定性分析[J]. 地质科技情报, 38(2): 275-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902033.htm
    成秋明, 2012. 覆盖区矿产综合预测思路与方法[J]. 地球科学(中国地质大学学报), 37(6): 1109-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206005.htm
    刘刚, 吴冲龙, 何珍文, 等, 2020. 面向地质时空大数据表达与存储管理的数据模型研究[J]. 地质科技通报, 39(1): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001020.htm
    刘江涛, 吴发富, 王建雄, 等, 2017. 基于ArcGIS建模器的数据处理模型在摩洛哥地球化学填图中的应用[J]. 地质科技情报, 36(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705001.htm
    孙东生, 陈群策, 张延庆, 2020. ASR法在井下矿山地应力测试中的应用前景分析[J]. 地质力学学报, 26(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001004.htm
    吴冲龙, 刘刚, 王力哲, 等, 2020. 基于大数据的城市地质环境智能监管思路与方法[J]. 地质科技通报, 39(1): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001019.htm
    辛磊, 刘新星, 张斌, 2021. 遥感影像地表温度反演与地热资源预测: 以石家庄地区为例[J]. 地质力学学报, 27(1): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201310008.htm
    杨峰, 王昊, 黄波, 等, 2019. 基于CT扫描的致密砂岩渗流特征及应力敏感性研究[J]. 地质力学学报, 25(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904003.htm
    张迪, 李家存, 吴中海, 等, 2021. 利用地面LiDAR精细化测量活断层微地貌形态: 以毛垭坝断裂禾尼处断层崖为例[J]. 地质力学学报, 27(1): 63-72.
    赵风顺, 华杉, 吴昊, 等, 2021. 印度尼西亚苏门答腊岛浅成低温热液型金(银)矿产资源总量预测[J]. 地质科技通报, 40(1): 119-131.
  • 加载中

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (1047) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return