Volume 29 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
DANG F P,LYU C,TANG X S,et al.,2023. Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance[J]. Journal of Geomechanics,29(6):898−914 doi: 10.12090/j.issn.1006-6616.2023028
Citation: DANG F P,LYU C,TANG X S,et al.,2023. Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance[J]. Journal of Geomechanics,29(6):898−914 doi: 10.12090/j.issn.1006-6616.2023028

Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance

doi: 10.12090/j.issn.1006-6616.2023028
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grants No. 42062006 and 42273028), the Open-access Fund of the State Key Laboratory of Nuclear Resources and Environment(Grant No. 2020NRE08), and the Project of the China Nuclear Geology (Grants No. 202231 and 202028-2)
More Information
  • Received: 2023-03-07
  • Revised: 2023-09-26
  • Available Online: 2024-06-12
  • The Dongshang Uranium Deposit is situated in the southern section of the Ganfang Pluton in the Jiuling Orogenic Belt of northwestern Jiangxi Province. The U-bearing granites consist mainly of medium- to coarse-grained, porphyritic biotite(binary) granite. Through zircon and monazite U-Pb geochronology, petrology, and rock geochemistry studies, the U-bearing granites' age, source characteristics, and rock genesis were determined, and their uranium metallogenic potential was also discussed. The LA-ICP-MS analysis showed that the zircon U-Pb intercept and weighted average ages are both 152±1 Ma, and the monazite U-Pb intercept and weighted average ages are 151±1 Ma and 151±2 Ma, respectively, indicating the formation of the U-bearing granites during the early Yanshan period. The major elements exhibit the characteristic of high silica content (SiO2 ranging from 72.1% to 75.6%), high alkalis content (K2O+Na2O ranging from 7.26% to 8.43%), potassium-rich and sodium-poor (K2O/Na2O=1.07 to 1.42), high aluminum (A/CNK=1.12 to 1.29), low titanium content (TiO2 ranging from 0.07% to 0.17%), and iron-poor magnesium (FeOT ranging from 0.75% to 1.28%, MgO ranging from 0.19% to 0.31%), classifying the U-bearing granites as high potassium calcalkaline peraluminous granites. Trace elements Ba, Sr, Nb, and Ti are depleted, while Rb, U, Pb, and Ta are enriched, representing a typical low Ba, Sr granite. The total rare earth elements (ΣREE) are relatively low (∑REE=21.6×10−6 to 50.7×10−6), exhibiting a right-dipping light rare earth enrichment pattern with a prominent negative Eu anomaly, which belongs to S-type granites. Based on geochronology and rock geochemical features, it's suggested that the Dongshang U-bearing granites were formed during the syn-collision compressional setting, resulting from the partial melting of the muscovite-rich metapelites of the Anlelin Formation in the Neoproterozoic Shuangqiaoshan Group. High uranium content, high Rb/Sr ratios, Th/U ratios less than 3, and high zircon uranium contents indicate the potential for uranium ore-forming conditions within these granites.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    China National Nuclear Corporation, 1996. Prospecting guidebook on granite-related uranium deposits: EJ/T 996—1996 [S]. Beijing: Nuclear Industry Standardization Institute: 1-67. (in Chinese)
    [2]
    CHEN D, LUO P, ZENG Z F, et al. , 2022. Petrogenesis and implications of the Dupangling compound granite in southern Hunan Province, China: Constraints from mineralogical chemistry, zircon U-Pb age, geochemistry and Nd-Hf isotope[J]. Journal of Geomechanics, 28(4): 617-641. (in Chinese with English abstract)
    [3]
    CHEN Z Y, WANG D H, 2014. The significance of Th, U contents and Th/U ratios of zircons in distinguishing uranium-producing and non-uranium-producing granites[J]. Mineral Deposits, 33(S1): 1159-1160. (in Chinese) DONG S W, ZHANG Y Q, LONG C X, et al. , 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 81(11): 1449-1461. (in Chinese with English abstract)
    [4]
    DOU X P, 2004. Genetic types of granitoids in eastern China and their relationship to uranium metallogenesis[J]. Uranium Geology, 20(6): 330-336. (in Chinese with English abstract)
    [5]
    DOU X P, XIONG C, DU X S, et al. , 2015. Study on uranium contents and the characteristics of migration enrichment in some granitic plutons of East China[J]. World Nuclear Geoscience, 32(3): 145-151. (in Chinese with English abstract)
    [6]
    DUAN Z, LIAO S B, CHU P L, et al. , 2019. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. Geology in China, 46(3): 493-516. (in Chinese with English abstract)
    [7]
    GUO C L, CHEN Z Y, LOU F S, et al. , 2014. Geochemical characteristics and genetic types of the W-Sn bearing Late Jurassic granites in the Nanling region[J]. Geotectonica et Metallogenia, 38(2): 301-311. (in Chinese with English abstract)
    [8]
    GUO X F,WANG Q L,JING Y H,et al, 2022.Zircon U-Pb Geochronology and Hf Isotope Characteristics of the Xihuashan Granites in Southern Jiangxi Province and Their Geological Significance[J].Geology and Exploration, 58(3):585-597.(in Chinese with English abstract)
    [9]
    HARRIS N B W, INGER S, 1992. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46-56. doi: 10.1007/BF00310881
    [10]
    JIANG S Y, PENG N J, HUANG L C, et al. , 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province[J]. Acta Petrologica Sinica, 31(3): 639-655. (in Chinese with English abstract)
    [11]
    LAN H F, LING H F, SUN L Q, et al. , 2016. Study on petrogenesis and uranium mineralization potential of Taojindong granite in southern Zhuguangshan composite pluton[J]. Geological Journal of China Universities, 22(1): 12-29. (in Chinese with English abstract)
    [12]
    LEE S Y, BARNES C G, SNOKE A W, et al. , 2003. Petrogenesis of Mesozoic, Peraluminous granites in the Lamoille Canyon area, Ruby Mountains, Nevada, USA[J]. Journal of Petrology, 44(4): 713-732. doi: 10.1093/petrology/44.4.713
    [13]
    LING H F, SHEN W Z, SUN T, et al. , 2006. Genesis and source characteristics of 22 Yanshanian granites in Guangdong province: study of element and Nd-Sr isotopes[J]. Acta Petrologica Sinica, 22(11): 2687-2703. (in Chinese with English abstract)
    [14]
    LIU Y, 2019. The mineralogical characteristics of the rare-metal granites in Jiuling district, Jiangxi province and the implication for the various metallogenic mechanism[D]. Nanjing University. (in Chinese with English abstract)
    [15]
    LIU Y S, HU Z C, GAO S, et al. , 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [16]
    LIU Y S, GAO S, HU Z C, et al. , 2010. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
    [17]
    LUDWIG K R, 2003. Isoplot/Ex, Version 3.00: a geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.
    [18]
    MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    [19]
    MAO J W, XIE G Q, GUO C L, et al. , 2008. Spatial-temporal distribution of Mesozoic Ore Deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510-526. (in Chinese with English abstract)
    [20]
    MAO J W, CHEN M H, YUAN S D, et al. , 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 85(5): 636-658. (in Chinese with English abstract)
    [21]
    MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
    [22]
    PEARCE J, 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
    [23]
    PECCERILLO A, TAYLOR S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
    [24]
    QIN C, 2018. Preliminary study of mineralization potentiality of Shiziling muscovite granite, Jiangxi province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [25]
    SONG B, ZHANG Y H, WAN Y S, et al. , 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(S1): 26-30. (in Chinese with English abstract)
    [26]
    SUN J D,LI H L,LU F,et al, 2022.Geochemistry,Zircon U-Pb Ages,and Hf Isotopes of the Mengshan Rock Mass in Western Jiangxi Province and Their Geologic Implications[J].Geology and Exploration, 58(1):96-107. (in Chinese with English abstract)
    [27]
    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [28]
    SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
    [29]
    TAN J, WEI J H, LI Y J, et al. , 2007. Some reviews on diagenesis and metallogeny of the Mesozoic crustal remelting granitoids in the Nanling region[J]. Geological Review, 53(3): 349-362. (in Chinese with English abstract)
    [30]
    TIAN Z J, 2014. Uranium-bearing and barren granites from the Zhuguang mountain: geochronology, Element geochemistry, mineralogy comparison[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [31]
    WANG D, 2017. Formation of huge granitic batholiths in Jiuling area of North Jiangxi province[D]. Nanjing: Nanjing University. (in Chinese with English abstract)
    [32]
    WANG L J, WANG J B, WANG Y Z, et al. , 2013. Geological characteristics of host granite intrusions of the W-Sn-Nb-Ta deposit, Nanling area, China[J]. Minerl Exploration, 4(6): 598-608. (in Chinese with English abstract)
    [33]
    WANG T, GUO L, LI S, et al. , 2019. Some important issues in the study of granite tectonics[J]. Journal of Geomechanics, 25(5): 899-919. (in Chinese with English abstract)
    [34]
    WANG W L, TENG X J, LIU Y, et al. , 2017. Zircon U-Pb chronology and geochemical characteristics of the Wuheertu granite mass in Langshan, Inner Mongolia[J]. Journal of Geomechanics, 23(3): 382-396. (in Chinese with English abstract)
    [35]
    WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
    [36]
    WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122
    [37]
    XIANG X K, YIN Q Q, SUN K K, et al. , 2015a. Origin of the Dahutang syn-collisional granite-porphyry in the middle segment of the Jiangnan orogen: zircon U-Pb geochronologic, geochemical and Nd-Hf isotopic constraints[J]. Acta Petrologica et Mineralogica, 34(5): 581-600. (in Chinese with English abstract)
    [38]
    XIANG X K, YIN Q Q, FENG C Y, et al. , 2015b. Elements and fluids migration regularity of granodiorite alteration zones in the Shimensi tungsten polymetallic deposit in northern Jiangxi and their constrain on mineralization[J]. Acta Geologica Sinica, 89(7): 1273-1287. (in Chinese with English abstract)
    [39]
    XIAO Z B, WANG H C, KANG J L, et al. , 2017. U-Pb chronology, Hf isotope and geological implication of zircons from the Neoarchean quartzite in Changyi area, eastern Shandong[J]. Acta Petrologica Sinica, 33(9): 2925-2938. (in Chinese with English abstract)
    [40]
    XIE L, LIU Y, WANG R C, et al. , 2019. Li–Nb–Ta mineralization in the Jurassic Yifeng Granite-aplite intrusion within the Neoproterozoic Jiuling batholith, South China: a fluid-rich and Quenching Ore-forming process[J]. Journal of Asian Earth Sciences, 185(17): 104047.
    [41]
    XU X S, ZHANG H, WU Y, et al. , 2021. Disintegration of Daguzhai composite pluton in South Jiangxi and its geological implication[J]. Uranium Geology, 37(3): 398-405. (in Chinese with English abstract)
    [42]
    ZHANG D, LI F, HE X L, et al. , 2021. Mesozoic tectonic deformation and its rock / ore-control mechanism in the important metallogenic belts in South China[J]. Journal of Geomechanics, 27(4): 497-528. (in Chinese with English abstract)
    [43]
    ZHANG Y, PAN J Y, MA D S, et al. , 2017. Re-Os molybdenite age of Dawutang tungsten ore district of northwest Jiangxi and its geological significance[J]. Mineral Deposits, 36(3): 749-769. (in Chinese with English abstract)
    [44]
    ZHANG Y, 2018. Ore-forming fluid evolution and Sb-Au-W metallogenesis in the Central Hunan-northwestern Jiangxi, South China[D]. Nanjing: Nanjing University. (in Chinese with English abstract)
    [45]
    ZHANG Y, LIU N Q, PAN J Y, et al. , 2019. Multi-mineralization stages of the Shimengsi giant tungsten deposit of Northwest Jiangxi: the application of cumulative frequency distribution in tungsten ore genesis and ore prospecting[J]. Journal of East China University of Technology, 42(4): 334-341, 367. (in Chinese with English abstract)
    [46]
    ZHANG Y, PAN J Y, MA D S, et al. , 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: constraints from mineralogy and geochemistry of hydrothermal alteration[J]. Acta Geologica Sinica, 94(11): 3321-3342. (in Chinese with English abstract)
    [47]
    ZHANG Y Q, DONG S W, ZHAO Y, et al. , 2007. Jurassic tectonics of North China: a synthetic view[J]. Acta Geologica Sinica, 81(11): 1462-1480. (in Chinese with English abstract)
    [48]
    ZHAO F M, 2011. Research and evaluation of uranium deposits in China (volume IV): carbonaceous-siliceous-pelitic rock type uranium deposit[M]. Beijing: China Nuclear Geology. (in Chinese)
    [49]
    ZHAO Z H, 1992. Trace element geochemical[J]. Advances in Earth Science, 7(5): 65-66. (in Chinese)
    [50]
    ZHAO Z H, ZHOU L D, 1997. REE geochemistry of some alkali-rich intrusive rocks in China[J]. Science in China Series D: Earth Sciences, 40(2): 145-158. doi: 10.1007/BF02878373
    [51]
    ZHOU J T, WANG G B, HE S F, et al. , 2011. Diagenesis and mineralization of Ganfang rock in Yifeng, Jiangxi province[J]. Journal of East China Institute of Technology, 34(4): 345-351, 358. (in Chinese with English abstract)
    [52]
    陈迪, 罗鹏, 曾志方, 等, 2022. 湘南都庞岭复式花岗岩成因及地质意义: 矿物化学、锆石U-Pb年代学、地球化学与Nd-Hf同位素制约[J]. 地质力学学报, 28(4): 617-641.
    [53]
    陈振宇, 王登红, 2014. 锆石Th、U含量和Th/U比值对产铀、不产铀花岗岩体的判别意义[J]. 矿床地质, 33(S1): 1159-1160.
    [54]
    董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449-1461.
    [55]
    窦小平, 2004. 华东地区花岗岩类成因类型及其与铀成矿的关系[J]. 铀矿地质, 20(6): 330-336.
    [56]
    窦小平, 熊超, 杜兴胜, 等, 2015. 华东地区部分花岗岩体铀含量及迁移富集特征研究[J]. 世界核地质科学, 32(3): 145-151.
    [57]
    段政, 廖圣兵, 褚平利, 等, 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 46(3): 493-516.
    [58]
    郭春丽, 陈振宇, 楼法生, 等, 2014. 南岭与钨锡矿床有关晚侏罗世花岗岩的成矿专属性研究[J]. 大地构造与成矿学, 38(2): 301-311.
    [59]
    郭小飞,王庆龙,荆一洪,等, 2022.赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义[J].地质与勘探, 58(3):585-597.
    [60]
    蒋少涌, 彭宁俊, 黄兰椿, 等, 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨[J]. 岩石学报, 31(3): 639-655.
    [61]
    兰鸿锋, 凌洪飞, 孙立强, 等, 2016. 诸广山南体桃金洞花岗岩成因和铀成矿潜力探讨[J]. 高校地质学报, 22(1): 12-29.
    [62]
    凌洪飞, 沈渭洲, 孙涛, 等, 2006. 广东省22个燕山期花岗岩的源区特征及成因: 元素及Nd-Sr同位素研究[J]. 岩石学报, 22(11): 2687-2703.
    [63]
    刘莹, 2019. 江西九岭地区稀有金属花岗岩矿物学特征与成矿机制差异性研究[D]. 南京大学.
    [64]
    毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 14(4): 510-526.
    [65]
    毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 85(5): 636-658.
    [66]
    秦程, 2018. 江西宜丰狮子岭白云母花岗岩成矿潜力研究[D]. 北京: 中国地质大学(北京).
    [67]
    宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26-30.
    [68]
    孙建东, 李海立, 陆凡, 等, 2022.赣西蒙山岩体地球化学、锆石U-Pb年龄、Hf同位素特征及地质意义[J].地质与勘探, 58(1):96-107.
    [69]
    谭俊, 魏俊浩, 李艳军, 等, 2007. 南岭中生代陆壳重熔型花岗岩类成岩成矿的有关问题[J]. 地质论评, 53(3): 349-362.
    [70]
    田泽瑾, 2014. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究[D]. 北京: 中国地质大学(北京).
    [71]
    王迪, 2017. 赣北九岭地区巨型复式花岗岩基的形成[D]. 南京: 南京大学.
    [72]
    王莉娟, 王京彬, 王玉往, 等, 2013. 我国南岭地区钨锡铌钽矿床成矿花岗岩主要地质特征[J]. 矿产勘查, 4(6): 598-608.
    [73]
    王涛, 郭磊, 李舢, 等, 2019. 花岗岩大地构造研究的若干重要问题[J]. 地质力学学报, 25(5): 899-919.
    [74]
    王文龙, 滕学建, 刘洋, 等, 2017. 内蒙古狼山乌和尔图花岗岩岩体锆石U-Pb年代学及地球化学特征[J]. 地质力学学报, 23(3): 382-396.
    [75]
    吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604.
    [76]
    项新葵, 尹青青, 孙克克, 等, 2015a. 江南造山带中段大湖塘同构造花岗斑岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石矿物学杂志, 34(5): 581-600.
    [77]
    项新葵, 尹青青, 丰成友, 等, 2015b. 赣北石门寺钨多金属矿床花岗闪长岩蚀变带元素、流体迁移规律及其对成矿作用的制约[J]. 地质学报, 89(7): 1273-1287.
    [78]
    肖志斌, 王惠初, 康健丽, 等, 2017. 胶东昌邑地区新太古代石英岩的锆石U-Pb年代学和Hf同位素特征及其地质意义[J]. 岩石学报, 33(9): 2925-2938.
    [79]
    徐勋胜, 张鸿, 吴勇, 等, 2021. 赣南打古寨复式花岗岩体的解体及其地质意义[J]. 铀矿地质, 37(3): 398-405.
    [80]
    张达, 李芳, 贺晓龙, 等, 2021. 华南重要成矿区带中生代构造变形及其控岩控矿机理[J]. 地质力学学报, 27(4): 497-528.
    [81]
    张勇, 潘家永, 马东升, 等, 2017. 赣西北大雾塘钨矿区地质特征及Re-Os同位素年代学研究[J]. 矿床地质, 36(3): 749-769.
    [82]
    张勇, 2018. 湘中-赣西北成矿流体演化与Sb-Au-W成矿[D]. 南京: 南京大学.
    [83]
    张勇, 刘南庆, 潘家永, 等, 2019. 赣西北石门寺超大型钨矿床多期成矿作用: 累积概率格纸在钨矿成因及找矿中的应用[J]. 东华理工大学学报(自然科学版), 42(4): 334-341, 367.
    [84]
    张勇, 潘家永, 马东升, 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示[J]. 地质学报, 94(11): 3321-3342.
    [85]
    张岳桥, 董树文, 赵越, 等, 2007. 华北侏罗纪大地构造: 综评与新认识[J]. 地质学报, 81(11): 1462-1480.
    [86]
    赵凤民, 2011. 中国铀矿床研究评价(第四卷): 碳硅泥岩型铀矿床[M]. 北京: 中国核工业地质局.
    [87]
    赵振华, 1992. 微量元素地球化学[J]. 地球科学进展, 7(5): 65-66.
    [88]
    中国核工业总公司, 1996. 花岗岩型铀矿找矿指南: EJ/T 976—1996[S]. 北京: 核工业标准化研究所: 1-67.
    [89]
    周建廷, 王国斌, 何淑芳, 等, 2011. 江西宜丰地区甘坊岩体成岩成矿作用分析[J]. 东华理工大学学报(自然科学版), 34(4): 345-351, 358.
  • 加载中

Catalog

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (439) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return