Volume 28 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
WU Weile, HE Kai, GAO Yang, et al., 2022. Long-runout fluidization disaster simulation analysis of clastic landslide under heavy rainfall: A case study of the Niuerwan landslide. Journal of Geomechanics, 28 (6): 1115-1126. DOI: 10.12090/j.issn.1006-6616.20222833
Citation: WU Weile, HE Kai, GAO Yang, et al., 2022. Long-runout fluidization disaster simulation analysis of clastic landslide under heavy rainfall: A case study of the Niuerwan landslide. Journal of Geomechanics, 28 (6): 1115-1126. DOI: 10.12090/j.issn.1006-6616.20222833

Long-runout fluidization disaster simulation analysis of clastic landslide under heavy rainfall: A case study of the Niuerwan landslide

doi: 10.12090/j.issn.1006-6616.20222833
Funds:

the National Natural Science Foundation of China 42177172

the National Natural Science Foundation for Young Scientists of China 41907257

More Information
  • Received: 2022-06-24
  • Revised: 2022-09-28
  • The frequent occurrence of remote landslide disasters under heavy rainfall in the mountainous area with sand-mudstone strata in southwest China is a critical issue to be solved in disaster prevention and mitigation. Taking the July 13, 2020 Niuerwan landslide in Wulong, Chongqing as an example, technical means including UAV image, field investigation, geological condition analysis, and PFC3D simulation were used to study the long-runout motion model of flowslide under heavy rainfall. The results show that the unique stratigraphic structure (Quaternary residual slope soil in the upper part and sand-mudstone in the lower part) is the root cause of the landslide instability and long-runout fluidization movement. Heavy rainfall is the key factor in causing the deep destabilization and overall decline of the landslide, and it also leads to the long-distance movement of the upper saturated residual soil. The long-runout fluidization disaster model of bedding landslide shows the characteristics of overall sliding of the lower layer, mixing of coarse and fine particles of the middle layer, and saturation fluidization in the upper layer. The long-runout fluidization process can be divided into three stages: the overall instability, the mixed acceleration, and the fluidization accumulation. Based on the above research, it is concluded that the investigation and prediction process of long-runout fluidization landslide in the mountainous area with sand-mudstone strata should be based on this particular disaster model to provide a quantitative scientific basis for disaster prevention and mitigation.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BUSS E, HEIM A, BECKER F, et al., 1881. Der Bergsturz von elm den 11. September 1881. Denkschrift[M]. Zürich J Wurtster & Cie, 1881.
    DAVIES T R, MCSAVENEY M J, HODGSON K A, 1999. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 36(6): 1096-1110. doi: 10.1139/t99-067
    DE BLASIO F V, CROSTA G B, 2015. Fragmentation and boosting of rock falls and rock avalanches[J]. Geophysical Research Letters, 42(20): 8463-8470. doi: 10.1002/2015GL064723
    EVANS S G, HUNGR O, CLAGUE J J, 2001. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes[J]. Engineering Geology, 61(1): 29-51. doi: 10.1016/S0013-7952(00)00118-6
    GAO H Y, GAO Y, HE K, et al., 2020. Impact and scraping effects of the high-elevation, long-runout "7.23" landslide in Shuicheng, Guizhou[J]. Carsologica Sinica, 39(4): 535-546. (in Chinese with English abstract)
    GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract)
    GAO Y, YIN Y P, LI B, et al., 2017. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan Ms8.0 earthquake[J]. Landslides, 14(4): 1361-1374. doi: 10.1007/s10346-016-0793-4
    GAO Y, YIN Y P, LI B, et al., 2019. Post-failure behavior analysis of the Shenzhen "12.20" CDW landfill landslide[J]. Waste Management, 83: 171-183. doi: 10.1016/j.wasman.2018.11.015
    GAO Y, HE K, LI Z, et al., 2020. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas[J]. Hydrogeology & Engineering Geology, 47(4): 14-23. (in Chinese with English abstract)
    GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng "7.23" landslide in Guizhou, China[J]. Landslides, 17(7): 1663-1677. doi: 10.1007/s10346-020-01377-8
    GAO Y, YIN Y P, LI B, et al., 2022. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides, 19(7): 1791-1805. doi: 10.1007/s10346-022-01858-y
    GAO Y, YIN Y P, LI Z, et al., 2022. Study on the dynamic disintegration effect of high position and long runout rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 41(10): 1958-1970. (in Chinese with English abstract)
    HU L, XIN P, WANG T, et al., 2021. Centrifuge model tests on the near-horizontal slide of hard soil-soft rock landslides [J]. Journal of Geomechanics, 27 (1): 73-82.
    HUNGR O, 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 32(4): 610-623. doi: 10.1139/t95-063
    KENT P E, 1966. The transport mechanism in catastrophic rock falls[J]. The Journal of Geology, 74(1): 79-83. doi: 10.1086/627142
    LAI Z Q, VALLEJO L E, ZHOU W, et al., 2017. Collapse of granular columns with fractal particle size distribution: implications for understanding the role of small particles in granular flows[J]. Geophysical Research Letters, 44(24): 12181-12189.
    LI B, GAO Y, YIN Y P, et al., 2022. Rainstorm-induced large-scale landslides in Northeastern Chongqing, China, August 31 to September 2, 2014[J]. Bulletin of Engineering Geology and the Environment, 81(7): 271. doi: 10.1007/s10064-022-02763-3
    LI Z, GAO Y, HE K, et al., 2020. Analysis of the fluidization process of the high position and longrunout landslide in Shuicheng, Liupanshui, Guizhou Province[J]. Journal of Geomechanics, 26(4): 520-532. (in Chinese with English abstract)
    LONG J H, REN J, ZENG F G, et al., 2019. Sliding mode and deformation law of double weak interlayer rock landslide[J]. Journal of China Coal Society, 44(10): 3031-3040. (in Chinese with English abstract)
    MENG H Y, ZHAN J W, LU Q Z, et al., 2022. Kinematics characteristics and numerical simulation analysis of "8.12" giant landslide in Shanyang county, Shaanxi province[J/OL]. Journal of Engineering Geology: 1-18[2022-06-09]. (in Chinese with English abstract)
    SASSA K, 1989. Geotechnical model for the motion of landslides (Special lecture)[C]//Proceedings of the 5th international symposium on landslides. Publ Rotterdam: A A Balkema: 37-56.
    SASSA K, WANG G H, FUKUOKA H, et al., 2004. Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas[J]. Landslides, 1(3): 221-235. doi: 10.1007/s10346-004-0028-y
    SASSA K, NAGAI O, SOLIDUM R, et al., 2010. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides, 7(3): 219-236. doi: 10.1007/s10346-010-0230-z
    XING A G, GAO G Y, CHEN L Z, et al., 2004. Study on hydrodynamics mechanism of large highspeed landslide in the set-out stage[J]. Chinese Journal of Rock Mechanics and Engineering, 23(4): 607-613. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.04.015
    XING A G, YIN Y P, 2009. Whole course analysis on hydrokinetics mechanism of Touzhai gully landslide[J]. Journal of Tongji University (Natural Science), 37(4): 481-485. (in Chinese with English abstract)
    XU Q, HUNAG R Q, YIN Y P, et al., 2009. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: characteristics and failure mechanism[J]. Journal of Engineering Geology, 17(4): 433-444. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.04.001
    XU Q, 2010. The 13 August 2010 catastrophic debris flows in Sichuan province: characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 18(5): 596-608. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.05.002
    YIN Y P, 2010. Mechanism of apparent dip slide of inclined bedding rockslide: a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2): 217-226. (in Chinese with English abstract)
    YIN Y P, WANG W P, ZHANG N, et al., 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5): 827-841. (in Chinese with English abstract)
    YU F, CHEN S X, YU H P, 2005. Numerical simulation study on progressive destruction and failure mechanism of bedding rock slopes[J]. Rock and Soil Mechanics, 26(S2): 36-40, doi: 10.16285/j.rsm.2005.s2.036. (in Chinese with English abstract)
    ZHANG L, TANG H M, XIONG C R, et al., 2012. Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 31(S1): 2601-2611. (in Chinese with English abstract)
    ZHANG Y J, XING A G, ZHU J L, 2012. Dynamics analysis of Niujuangou rockslide-debris avalanche triggered by the Wenchuan earthquake[J]. Journal of Shanghai Jiaotong University, 46(10): 1665-1670. (in Chinese with English abstract)
    ZHANG Y L, CHEN L, YAN J K, et al., 2021. Study on the catastrophic process of rapid and long run-out landslides based on DAN-W[J]. Northwestern Geology, 54(1): 204-211. (in Chinese with English abstract)
    ZOU Z X, TANG H M, XIONG C R, et al., 2012. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2222-2231. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.11.010
    高浩源, 高杨, 贺凯, 等, 2020. 贵州水城"7.23"高位远程滑坡冲击铲刮效应分析[J]. 中国岩溶, 39(4): 535-546. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202004009.htm
    高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. doi: 10.3969/j.issn.1006-6616.2017.01.002
    高杨, 贺凯, 李壮, 等, 2020. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质, 47(4): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004003.htm
    高杨, 殷跃平, 李壮, 等, 2022. 高位远程岩质滑坡动力解体效应研究[J]. 岩石力学与工程学报, 41(10): 1958-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210002.htm
    胡乐, 辛鹏, 王涛, 等, 2021. 硬土软岩滑坡近水平滑移的离心机模型试验研究[J]. 地质力学学报, 27(1): 73-82. doi: 10.12090/j.issn.1006-6616.2021.27.01.008
    李壮, 高杨, 贺凯, 等, 2020. 贵州省六盘水水城高位远程滑坡流态化运动过程分析[J]. 地质力学学报, 26(4): 520-532. doi: 10.12090/j.issn.1006-6616.2020.26.04.045
    龙建辉, 任杰, 曾凡桂, 等, 2019. 双软弱夹层岩质滑坡的滑动模式及变形规律[J]. 煤炭学报, 44(10): 3031-3040. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201910010.htm
    孟桓羽, 占洁伟, 卢全中, 等, 2022. 陕西山阳"8.12"大型山体滑坡运动特征及数值模拟分析[J/OL]. 工程地质学报: 1-18[2022-06-09].
    邢爱国, 高广运, 陈龙珠, 等, 2004. 大型高速滑坡启程流体动力学机理研究[J]. 岩石力学与工程学报, 23(4): 607-613. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200404014.htm
    邢爱国, 殷跃平, 2009. 云南头寨滑坡全程流体动力学机理分析[J]. 同济大学学报(自然科学版), 37(4): 481-485. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904015.htm
    许强, 黄润秋, 殷跃平, 等, 2009. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 17(4): 433-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200904002.htm
    许强, 2010. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 18(5): 596-608. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201005003.htm
    殷跃平, 2010. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 29(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm
    殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm
    余飞, 陈善雄, 余和平, 2005. 顺层岩质边坡渐进破坏及失稳机理的数值模拟研究[J]. 岩土力学, 26(S2): 36-40, doi: 10.16285/j. rsm. 2005. s2. 036.
    张龙, 唐辉明, 熊承仁, 等, 2012. 鸡尾山高速远程滑坡运动过程PFC3D模拟[J]. 岩石力学与工程学报, 31(S1): 2601-2611. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1001.htm
    张艳玲, 陈亮, 闫金凯, 等, 2021. 基于DAN-W模型的高速远程滑坡灾变过程分析[J]. 西北地质, 54(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202101018.htm
    张远娇, 邢爱国, 朱继良, 2012. 汶川地震触发牛圈沟高速远程滑坡-碎屑流动力学特性分析[J]. 上海交通大学学报, 46(10): 1665-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201210024.htm
    邹宗兴, 唐辉明, 熊承仁, 等, 2012. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报, 31(11): 2222-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm
  • 加载中

Catalog

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (712) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return