LI Tiancheng, FANG Weixuan, WANG Lei, et al., 2022. Application of integrated geophysical method in prospecting: A case study of the magnetite-type IOCG deposits in the Moon Mountain exploration area, Copiapo, Chile. Journal of Geomechanics, 28 (1): 22-35. DOI: 10.12090/j.issn.1006-6616.20222802
Citation: GONG Lingfeng, ZHANG Yunda, TIE Yongbo, et al., 2022. Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene. Journal of Geomechanics, 28 (6): 1024-1034. DOI: 10.12090/j.issn.1006-6616.20222826

Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene

doi: 10.12090/j.issn.1006-6616.20222826
Funds:

the National Natural Science Foundation of China U20A20110-01

the Geological Survey Project of the China Geological Survey DD20221746

More Information
  • Multi-period debris flows have been developed in the last glacial period of the late Pleistocene-Holocene near the Grand Bend of the Yarlung Zangbo River in southeast Tibet, which combined to form a modern large-scale fan-shaped accumulation. The debris flows in the Bangga gully, Pai Town, were explored by ground survey, borehole, and 14C dating methods to investigate the chronological sequence of formation, accumulation depth, and outrush range. The analysis results show that there are still small-scale debris flows in the tributaries of the Bengga gully, and they are widely accumulated in the channel, but no debris flow accumulation has been found in the existing accumulation fan area. The Holocene debris flows in the Bunga gully were active around 8500 years ago, and the cumulative accumulation depth of a single period is about 10.9 m. The two carbon samples in the light gray silt sand formed by the shallow lake facies (fluvial facies) show that the modern riverbed of the Yarlung Zangbo River was deposited at a depth of about 0.4 m in 40 to 100 years, and the annual average deposition rate was about 4~10 mm. The boreholes at 2906.1~2896.7 m and 2849.4~2848.2 m above sea level reveal a thickness of 9.4 m and 1.2 m cake-like bluish-gray clay in turn. It is assumed that two river-blocking events occurred. The above results could provide a reference for the study of the debris flow activity characteristics since the Holocene in this region.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • BERNHARDT H, REISS D, HIESINGER H, et al., 2017. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard)[J]. Geomorphology, 296: 132-141. doi: 10.1016/j.geomorph.2017.08.049
    CHEN J, CUI Z J, 2014. Development features of the Early Pleistocene debris-flow deposits at the Baima Mountain Pass, Yunnan Province and their paleoclimatic and tectonic significance[J]. Arid Land Geography, 37(2): 203-211. (in Chinese with English abstract)
    CHENG Z L, TIAN J C, ZHANG Z B, et al., 2009. Analysis on environment of disasters resulting from river blockage in Tibet[J]. Journal of Catastrophology, 24(1): 26-30. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2009.01.006
    HAN L M, 2018. Geological hazard characteristics and risk assessment of Brahmaputra from Wolong to Zhibai stream segment[D]. Chengdu: Chengdu University of Technology.
    HOYOS N, MONSALVE O, BERGER G W, et al., 2015. A climatic trigger for catastrophic Pleistocene-Holocene debris flows in the eastern Andean Cordillera of Colombia[J]. Journal of Quaternary Science, 30(3): 258-270. doi: 10.1002/jqs.2779
    HUANG C C, GUO Y Q, ZHANG Y Z, et al., 2019. Holocene sedimentary stratigraphy and pre-historical catastrophes over the Lajia Ruins within the Guanting Basin in Qinghai province of China[J]. Scientia Sinica Terrae, 49(2): 434-455. (in Chinese) doi: 10.1360/N072017-00378
    JABOYEDOFF M, CARREA D, DERRON M H, et al., 2020. A review of methods used to estimate initial landslide failure surface depths and volumes[J]. Engineering Geology, 267: 105478. doi: 10.1016/j.enggeo.2020.105478
    LEONG E C, CHENG Z Y, 2022. A geometry-modelling method to estimate landslide volume from source area[J]. Landslides, 19(8): 1971-1985. doi: 10.1007/s10346-022-01864-0
    LI C P, WANG P, QIAN D, et al., 2015. Ages of the recent two episodes of glacially dammed lakes along the upstream of the Yarlung Zangbo Gorge[J]. Seismology and Geology, 37(4): 1136-1146. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2015.04.016
    LI Y H, ZHANG X Y, CUI Z J, et al, 2002. Periodic coupling of debris flow active periods and climate periods during Quaternary[J]. Quaternary Sciences, 22(4): 340-348. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2002.04.006
    LI Y J, MENG X M, STEVENS T, et al., 2021. Distinct periods of fan aggradation and incision for tributary valleys of different sizes along the Bailong River, eastern margin of the Tibetan Plateau[J]. Geomorphology, 373: 107490. doi: 10.1016/j.geomorph.2020.107490
    LIU X W, 2015. Analysis of the meteorological and hydrological charateristics in the Yarlung Zangbo River Basins[D]. Beijing: Tsinghua University. (in Chinese with English abstract)
    LIU Y P, MONTGOMERY D R, HALLET B, et al., 2006. Quaternary glacier blocking events at the entrance of Yarlung Zangbo great canyon, Southeast Tibet[J]. Quaternary Sciences, 26(1): 52-62. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2006.01.007
    MALIK I, TIE Y B, OWCZAREK P, et al., 2013. Human-planted alder trees as a protection against debris flows (a dendrochronological study from the Moxi Basin, Southwestern China)[J]. Geochronometria, 40(3): 208-216. doi: 10.2478/s13386-013-0113-x
    MONTGOMERY D R, HALLET B, LIU Y P, et al., 2004. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet[J] Quaternary Research, 62(2): 201-207. doi: 10.1016/j.yqres.2004.06.008
    MARC O, HOVIUS N, MEUNIER P, et al, 2015. Transient changes of landslide rates after earthquakes[J]. Geology, 43(10): 883-886. doi: 10.1130/G36961.1
    ŠILHÁN K, TICHAVSKY R, 2016. Recent increase in debris flow activity in the Tatras Mountains: Results of a regional dendrogeomorphic reconstruction[J]. CATENA, 143: 221-231. doi: 10.1016/j.catena.2016.04.015
    TANG C, ZHU J, DING J, et al, 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8: 485-497. doi: 10.1007/s10346-011-0269-5
    TIE Y B, MALIK I, OWCZAREK P, 2014. Dendrochronological Dating of debris flow historical events in high mountain area: Take Daozao debris flow as an example[J]. Mountain Research, 32(2): 226-232. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2014.02.013
    WANG H Y, TONG K Y, HU G, et al., 2021. Dam and megafloods at the first bend of the Yangtze River since the Last Glacial Maximum[J]. Geomorphology, 373: 107491. doi: 10.1016/j.geomorph.2020.107491
    WANG P, WANG H Y, HU G, et al., 2021. A preliminary study on the development of dammed paleolakes in the Yarlung Tsangpo River Basin, southeastern Tibet[J]. Earth Science Frontiers, 28(2): 35-45. (in Chinese with English abstract)
    YANG H, CUI C G, WANG X F, et al. 2019. Research progresses of precipitation variation over the Yarlung Zangbo River basin under global climate warming[J]. Torrential Rain and Disasters, 38(6): 565-575.
    ZHANG P Q, LIU X H, KONG P, 2008. Evidence for glacial movement since last glacial period in the Great Canyon, Yarlung Zangbo, SE Tibet and its tectono-environmental implications[J]. Chinese Journal of Geology, 43(3): 588-602. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.2008.03.013
    ZHANG P Q, GAO M X, LEI Y L, et al, 2009. Quantitative terrain analysis of the great canyon region of Yalungzangbo River, Tibet and discussion of its origin[J]. Journal of Earth Science: 34(4): 595-603.
    ZHAO Q Y, WEI M J, SONG B, et al., 2013. TL evidence of debris flow developments in the Late Pleistocene of Yunnan Jiangjia Valley Basin[J]. Nuclear Electronics & Detection Technology, 33(7): 865-868. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-0934.2013.07.021
    ZHAO W J, 2015. The Formation characteristics and geomorphical evolution of the landslides and debris flow fans in Guide basin, the upper reaches of the Yellow River[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    ZHU S, 2012. River Landform and geological environment evolution in the Yarlung Zangbo River Vally[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    ZHU S, WU Z H, ZHAO X T, et al, 2013. The age of glacial dammed lakes in the Yarlung Zangbo River Grand Bend during Late Quaternary by OSL[J]. Acta Geoscientia Sinica, 34(2): 246-250. (in Chinese with English abstract)
    陈剑, 崔之久, 2014. 云南白马雪山垭口早更新世泥石流的发育特征及其古气候和构造意义[J]. 干旱区地理, 37(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201402001.htm
    程尊兰, 田金昌, 张正波, 等, 2009. 西藏江河堵溃灾害及成灾环境分析[J]. 灾害学, 24(1): 26-30. doi: 10.3969/j.issn.1000-811X.2009.01.006
    黄春长, 郭永强, 张玉柱, 等, 2019. 青海官亭盆地喇家遗址全新世地层序列与史前灾难研究[J]. 中国科学: 地球科学, 49(2): 434-455. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201902008.htm
    韩立明, 2018. 雅鲁藏布江卧龙至直白河段地质灾害发育特征及危险性评价[D]. 成都: 成都理工大学.
    李翠平, 王萍, 钱达, 等, 2015. 雅鲁藏布江大峡谷入口河段最近两期古堰塞湖事件的年龄[J]. 地震地质, 37(4): 1136-1146. doi: 10.3969/j.issn.0253-4967.2015.04.016
    刘湘伟, 2015. 雅鲁藏布江流域水文气象特性分析[D]. 北京: 清华大学.
    李永化, 张小咏, 崔之久, 等, 2002. 第四纪泥石流活动期与气候期的阶段性耦合过程[J]. 第四纪研究, 22(4): 340-348. doi: 10.3321/j.issn:1001-7410.2002.04.006
    刘宇平, MONTGOMERY D R, HALLET B, 等, 2006. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件[J]. 第四纪研究, 26(1): 52-62. doi: 10.3321/j.issn:1001-7410.2006.01.007
    铁永波, MALIK I, OWCZAREK P, 2014. 树木年代学在高寒山区泥石流历史事件重建中的应用: 以磨西河流域倒灶沟为例[J]. 山地学报, 32(2): 226-232. doi: 10.3969/j.issn.1008-2786.2014.02.013
    王萍, 王慧颖, 胡钢, 等, 2021. 雅鲁藏布江流域古堰塞湖群的发育及其地质意义初探[J]. 地学前缘, 28(2): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102004.htm
    杨浩, 崔春光, 王晓芳, 等, 2019. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 38(6): 565-575. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906001.htm
    张沛全, 刘小汉, 孔屏, 2008. 雅鲁藏布江大拐弯地区末次冰期以来的冰川活动证据及其构造-环境意义[J]. 地质科学, 43(3): 588-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803014.htm
    张沛全, 高明星, 雷永良, 等, 2009. 西藏雅鲁藏布江大拐弯地区量化地貌特征及其成因[J]. 地球科学(中国地质大学学报): 34(4): 595-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904005.htm
    赵秋月, 魏明建, 宋波, 等, 2013. 晚更新世云南蒋家沟流域泥石流发育的热释光证据[J]. 核电子学与探测技术, 33(7): 865-868. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201307020.htm
    赵无忌, 2015. 黄河上游贵德盆地滑坡泥石流扇发育特征及地貌演化过程[D]. 北京: 中国地质大学(北京).
    祝嵩, 2012. 雅鲁藏布江河谷地貌与地质环境演化[D]. 北京: 中国地质科学院.
    祝嵩, 吴珍汉, 赵希涛, 等, 2013. 用OSL方法确定雅鲁藏布江大拐弯第四纪晚期冰川堰塞湖年龄[J]. 地球学报, 34(2): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302017.htm
  • Relative Articles

    TANG Haibing, WU Jianjun, ZHANG Chunshan, YANG Weimin, QU Jingkai, MA Siqi, XU Chuancheng. 2024: Debris flow hazard analysis before and after improvement of Hanjia gully control engineering at the source area of the Fujiang River. Journal of Geomechanics, 30(4): 659-672. doi: 10.12090/j.issn.1006-6616.2023097
    GU Zhenkui, YAO Xin, LI Lingjing, TAO Tao. 2023: Applying stream power gradient in the investigation on spatial susceptibility of debris flow: A case of the Jinsha River Basin, China. Journal of Geomechanics, 29(1): 87-98. doi: 10.12090/j.issn.1006-6616.2022022
    ZHANG Xianzheng, TIE Yongbo, LI Guanghui, YANG Chang, LU Jiayan, LU Tuo. 2022: Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28(6): 1035-1045. doi: 10.12090/j.issn.1006-6616.20222827
    ZHANG Haowei, LIU Fuzhen, WANG Junchao, ZHANG Jiajia. 2022: Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation. Journal of Geomechanics, 28(2): 306-318. doi: 10.12090/j.issn.1006-6616.2021117
    MA Siqi, YANG Weimin, ZHANG Chunshan, QU Jingkai, WAN Feipeng, TANG Haibing. 2022: Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou City. Journal of Geomechanics, 28(6): 1059-1070. doi: 10.12090/j.issn.1006-6616.20222829
    LI Yihao, DU Xingxing, LI Tianxiu. 2022: Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Tibetan Plateau, and their formation mechanism. Journal of Geomechanics, 28(3): 353-366. doi: 10.12090/j.issn.1006-6616.2021151
    WANG Zhaobo, WANG Jiangyue, HE Lelong, ZHANG Jian, ZHAO Xiangyang, LI Baojie. 2021: Characteristics and evolution process of the ridge-groove sequence of the Jiulongtan glacial accumulation in Mengshan, Shandong: with the discussion on the difference of accumulation sequence of glacier and debris flow. Journal of Geomechanics, 27(1): 105-116. doi: 10.12090/j.issn.1006-6616.2021.27.01.011
    ZHOU Qing-shuo, ZHANG Xu-jiao, YE Pei-sheng, HE Ze-xin, CAI Mao-tang, LIU Xiao-tong, LI Cheng-lu, WU Ze-qun. 2017: THE DISTRIBUTION AND PERIOD DIVISION OF HOLOCENE PALAEO CHANNELS OF THE YELLOW RIVER IN HETAO AREA. Journal of Geomechanics, 23(3): 339-347.
    LIU Yu-ping, LIANG Hong, CHENG Fi-fi. 2016: APPLICATION OF HIGH RESOLUTION AIRBORNE LIDAR IN XIAOJIANG ACTIVE TECTONICS AND GEOLOGICAL DISASTER STUDY. Journal of Geomechanics, 22(3): 747-759.
    ZHANG Rui-duan, GUO Chang-bao, ZHANG Yong-shuang, FU Xiao-xiao. 2014: DEVELOPMENT CHARACTERISTICS AND PREVENTION SUGGESTIONS OF THE LEPA DEBRIS FLOW IN THE ANNING RIVER FAULT ZONE. Journal of Geomechanics, 20(2): 132-139.
    SHI Ling, WANG Tao, XIN Peng. 2013: DEVELOPMENT CHARACTERISTICS OF THE GEO-HARZARDS IN BAOJI CITY, SHAANXI PROVINCE. Journal of Geomechanics, 19(4): 351-363.
    ZHAO Zhi-li, WANG Yong, CHI Zhen-qing, GUAN You-yi, YAO Pei-yi. 2011: ENVIROMENTAL CHANGES RECORDED BY POLLEN SINCE MID TO LATE HOLOCENE IN HUITENGXILE LAKE, LNNER MONGOLIA. Journal of Geomechanics, 17(1): 103-110.
    XIONG Tan-yu, YAO Xin, ZHANG Yong-shuang. 2010: A REVIEW ON STUDY OF ACTIVITY OF XIANSHUIHE FAULT ZONE SINCE THE HOLOCENE. Journal of Geomechanics, 16(2): 176-188.
    WANG Xian-li, QU Yong-xin, JIANG Liang-wen, ZHANG Yong-shuang. 2007: ENGINEERING PROPERTIES OF EARLY HOLOCENE SOFT CLAY ON THE EAST BANK OF ERHAI LAKE. Journal of Geomechanics, 13(3): 261-269.
    DING Ji-xin, YANG Zhi-fa, SHANG Yan-jun. 2006: CAUSE ANALYSIS AND QUANTITATIVE ZONATION OF MUDFLOW HAZARDS ALONG THE RAWU-LUNANG SECTION, SICHUAN-TIBET HIGHWAY. Journal of Geomechanics, 12(2): 203-210,226.
    WANG Yan, YE Qing-pei, QIAO Yan-song. 2006: PALYNOLOGICAL RECORDS OF THE HOLOCENE ENVIRONMENTAL CHANGES IN ZHENGLAN QI, INNER MONGOLIA. Journal of Geomechanics, 12(3): 324-328.
    ZHANG Chun-shan, ZHANG Ye-cheng, ZHANG Li-hai. 2004: DANGER ASSESSMENT OF COLLAPSES,LANDSLIDES AND DEBRIS FLOWS OF GEOLOGICAL HAZARDS IN CHINA. Journal of Geomechanics, 10(1): 27-32.
    CUI Zhi-jiu, TANG Yuan-xin, LI Jian-jiang, LIU Hong-yan, LIU Geng-nian. 2003: INFORMATION OF HOLOCENE ENVIRONMENTAL CHANGE FROM LACUSTRIAN DEPOSITS OF THE FOYECHI LAKE SECTION,TAIBAI MOUNTAIN. Journal of Geomechanics, 9(4): 330-336.
    LIU Xi-lin. 2000: DEBRIS FLOW RISK ZONATION IN ZHAOTONG COUNTY OF YUNNAN PROVINCE,CHINA. Journal of Geomechanics, 6(4): 37-42.
    Lao Xiong. 1995: ON THE FORMATION OF YARLUNG ZANGBO RIVER FAULT ZONE. Journal of Geomechanics, 1(1): 53-59.
  • Cited by

    Periodical cited type(2)

    1. 赵聪,梁京涛,铁永波,马晓波,张肃,龚凌枫. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究. 中国地质灾害与防治学报. 2024(04): 45-55 .
    2. 张国忠,李德华,廖俊雄,周沁铃. 得荣县泥石流的诱发降雨阈值分析. 农业灾害研究. 2024(10): 224-226+323 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.9 %FULLTEXT: 17.9 %META: 72.1 %META: 72.1 %PDF: 9.9 %PDF: 9.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %Central District: 0.1 %Central District: 0.1 %上海: 1.0 %上海: 1.0 %东莞: 0.2 %东莞: 0.2 %中卫: 2.2 %中卫: 2.2 %临汾: 0.1 %临汾: 0.1 %乐山: 0.2 %乐山: 0.2 %九江: 0.2 %九江: 0.2 %云浮: 0.7 %云浮: 0.7 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %佛山: 0.3 %佛山: 0.3 %佳木斯: 0.1 %佳木斯: 0.1 %六盘水: 0.1 %六盘水: 0.1 %兰州: 0.8 %兰州: 0.8 %内江: 0.1 %内江: 0.1 %北京: 18.9 %北京: 18.9 %南京: 0.3 %南京: 0.3 %南宁: 0.3 %南宁: 0.3 %南昌: 0.3 %南昌: 0.3 %厦门: 0.1 %厦门: 0.1 %台北: 0.2 %台北: 0.2 %呼和浩特: 0.9 %呼和浩特: 0.9 %哈尔滨: 0.3 %哈尔滨: 0.3 %商丘: 0.2 %商丘: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %固原: 0.1 %固原: 0.1 %塔城: 0.1 %塔城: 0.1 %大连: 0.1 %大连: 0.1 %天津: 1.0 %天津: 1.0 %太原: 0.3 %太原: 0.3 %宁波: 0.4 %宁波: 0.4 %安康: 0.3 %安康: 0.3 %宜春: 0.1 %宜春: 0.1 %宣城: 0.8 %宣城: 0.8 %岳阳: 0.1 %岳阳: 0.1 %巴中: 0.2 %巴中: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.4 %广州: 0.4 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %廊坊: 0.2 %廊坊: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 4.0 %张家口: 4.0 %徐州: 0.2 %徐州: 0.2 %德阳: 0.3 %德阳: 0.3 %恩施: 0.2 %恩施: 0.2 %成都: 5.8 %成都: 5.8 %扬州: 0.5 %扬州: 0.5 %拉萨: 0.7 %拉萨: 0.7 %攀枝花: 0.1 %攀枝花: 0.1 %新乡: 0.1 %新乡: 0.1 %日喀则: 0.2 %日喀则: 0.2 %昆明: 1.0 %昆明: 1.0 %昌都: 0.1 %昌都: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.1 %杭州: 0.1 %林芝: 0.1 %林芝: 0.1 %格兰特县: 0.6 %格兰特县: 0.6 %梧州: 0.1 %梧州: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 1.7 %武汉: 1.7 %汉中: 0.1 %汉中: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %湘西: 0.1 %湘西: 0.1 %滁州: 0.2 %滁州: 0.2 %漯河: 2.2 %漯河: 2.2 %潍坊: 0.1 %潍坊: 0.1 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.2 %烟台: 0.2 %珠海: 0.2 %珠海: 0.2 %石嘴山: 0.2 %石嘴山: 0.2 %石家庄: 1.3 %石家庄: 1.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 6.4 %芒廷维尤: 6.4 %芝加哥: 1.2 %芝加哥: 1.2 %萍乡: 0.2 %萍乡: 0.2 %衡阳: 0.1 %衡阳: 0.1 %西宁: 24.5 %西宁: 24.5 %西安: 0.6 %西安: 0.6 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.2 %赣州: 0.2 %赤峰: 0.1 %赤峰: 0.1 %达州: 0.3 %达州: 0.3 %运城: 0.7 %运城: 0.7 %连云港: 0.7 %连云港: 0.7 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.4 %郑州: 0.4 %郴州: 0.1 %郴州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %酒泉: 0.2 %酒泉: 0.2 %重庆: 0.4 %重庆: 0.4 %银川: 0.1 %银川: 0.1 %长沙: 1.6 %长沙: 1.6 %阳泉: 0.1 %阳泉: 0.1 %雅加达: 0.1 %雅加达: 0.1 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.1 %鞍山: 0.1 %黔南: 0.1 %黔南: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他Central District上海东莞中卫临汾乐山九江云浮伊斯坦布尔佛山佳木斯六盘水兰州内江北京南京南宁南昌厦门台北呼和浩特哈尔滨商丘嘉兴固原塔城大连天津太原宁波安康宜春宣城岳阳巴中常州平顶山广州库比蒂诺廊坊开封张家口徐州德阳恩施成都扬州拉萨攀枝花新乡日喀则昆明昌都朝阳杭州林芝格兰特县梧州武威武汉汉中江门沈阳泸州洛阳济南淮南深圳温州湖州湘西滁州漯河潍坊濮阳烟台珠海石嘴山石家庄福州秦皇岛纽约绵阳芒廷维尤芝加哥萍乡衡阳西宁西安西雅图诺沃克贵阳赣州赤峰达州运城连云港遵义邯郸郑州郴州鄂州酒泉重庆银川长沙阳泉雅加达青岛鞍山黔南龙岩

Catalog

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (855) PDF downloads(118) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return