Volume 28 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
GONG Lingfeng, ZHANG Yunda, TIE Yongbo, et al., 2022. Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene. Journal of Geomechanics, 28 (6): 1024-1034. DOI: 10.12090/j.issn.1006-6616.20222826
Citation: GONG Lingfeng, ZHANG Yunda, TIE Yongbo, et al., 2022. Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene. Journal of Geomechanics, 28 (6): 1024-1034. DOI: 10.12090/j.issn.1006-6616.20222826

Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene

doi: 10.12090/j.issn.1006-6616.20222826
Funds:

the National Natural Science Foundation of China U20A20110-01

the Geological Survey Project of the China Geological Survey DD20221746

More Information
  • Received: 2022-06-21
  • Revised: 2022-09-24
  • Multi-period debris flows have been developed in the last glacial period of the late Pleistocene-Holocene near the Grand Bend of the Yarlung Zangbo River in southeast Tibet, which combined to form a modern large-scale fan-shaped accumulation. The debris flows in the Bangga gully, Pai Town, were explored by ground survey, borehole, and 14C dating methods to investigate the chronological sequence of formation, accumulation depth, and outrush range. The analysis results show that there are still small-scale debris flows in the tributaries of the Bengga gully, and they are widely accumulated in the channel, but no debris flow accumulation has been found in the existing accumulation fan area. The Holocene debris flows in the Bunga gully were active around 8500 years ago, and the cumulative accumulation depth of a single period is about 10.9 m. The two carbon samples in the light gray silt sand formed by the shallow lake facies (fluvial facies) show that the modern riverbed of the Yarlung Zangbo River was deposited at a depth of about 0.4 m in 40 to 100 years, and the annual average deposition rate was about 4~10 mm. The boreholes at 2906.1~2896.7 m and 2849.4~2848.2 m above sea level reveal a thickness of 9.4 m and 1.2 m cake-like bluish-gray clay in turn. It is assumed that two river-blocking events occurred. The above results could provide a reference for the study of the debris flow activity characteristics since the Holocene in this region.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BERNHARDT H, REISS D, HIESINGER H, et al., 2017. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard)[J]. Geomorphology, 296: 132-141. doi: 10.1016/j.geomorph.2017.08.049
    CHEN J, CUI Z J, 2014. Development features of the Early Pleistocene debris-flow deposits at the Baima Mountain Pass, Yunnan Province and their paleoclimatic and tectonic significance[J]. Arid Land Geography, 37(2): 203-211. (in Chinese with English abstract)
    CHENG Z L, TIAN J C, ZHANG Z B, et al., 2009. Analysis on environment of disasters resulting from river blockage in Tibet[J]. Journal of Catastrophology, 24(1): 26-30. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2009.01.006
    HAN L M, 2018. Geological hazard characteristics and risk assessment of Brahmaputra from Wolong to Zhibai stream segment[D]. Chengdu: Chengdu University of Technology.
    HOYOS N, MONSALVE O, BERGER G W, et al., 2015. A climatic trigger for catastrophic Pleistocene-Holocene debris flows in the eastern Andean Cordillera of Colombia[J]. Journal of Quaternary Science, 30(3): 258-270. doi: 10.1002/jqs.2779
    HUANG C C, GUO Y Q, ZHANG Y Z, et al., 2019. Holocene sedimentary stratigraphy and pre-historical catastrophes over the Lajia Ruins within the Guanting Basin in Qinghai province of China[J]. Scientia Sinica Terrae, 49(2): 434-455. (in Chinese) doi: 10.1360/N072017-00378
    JABOYEDOFF M, CARREA D, DERRON M H, et al., 2020. A review of methods used to estimate initial landslide failure surface depths and volumes[J]. Engineering Geology, 267: 105478. doi: 10.1016/j.enggeo.2020.105478
    LEONG E C, CHENG Z Y, 2022. A geometry-modelling method to estimate landslide volume from source area[J]. Landslides, 19(8): 1971-1985. doi: 10.1007/s10346-022-01864-0
    LI C P, WANG P, QIAN D, et al., 2015. Ages of the recent two episodes of glacially dammed lakes along the upstream of the Yarlung Zangbo Gorge[J]. Seismology and Geology, 37(4): 1136-1146. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2015.04.016
    LI Y H, ZHANG X Y, CUI Z J, et al, 2002. Periodic coupling of debris flow active periods and climate periods during Quaternary[J]. Quaternary Sciences, 22(4): 340-348. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2002.04.006
    LI Y J, MENG X M, STEVENS T, et al., 2021. Distinct periods of fan aggradation and incision for tributary valleys of different sizes along the Bailong River, eastern margin of the Tibetan Plateau[J]. Geomorphology, 373: 107490. doi: 10.1016/j.geomorph.2020.107490
    LIU X W, 2015. Analysis of the meteorological and hydrological charateristics in the Yarlung Zangbo River Basins[D]. Beijing: Tsinghua University. (in Chinese with English abstract)
    LIU Y P, MONTGOMERY D R, HALLET B, et al., 2006. Quaternary glacier blocking events at the entrance of Yarlung Zangbo great canyon, Southeast Tibet[J]. Quaternary Sciences, 26(1): 52-62. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2006.01.007
    MALIK I, TIE Y B, OWCZAREK P, et al., 2013. Human-planted alder trees as a protection against debris flows (a dendrochronological study from the Moxi Basin, Southwestern China)[J]. Geochronometria, 40(3): 208-216. doi: 10.2478/s13386-013-0113-x
    MONTGOMERY D R, HALLET B, LIU Y P, et al., 2004. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet[J] Quaternary Research, 62(2): 201-207. doi: 10.1016/j.yqres.2004.06.008
    MARC O, HOVIUS N, MEUNIER P, et al, 2015. Transient changes of landslide rates after earthquakes[J]. Geology, 43(10): 883-886. doi: 10.1130/G36961.1
    ŠILHÁN K, TICHAVSKY R, 2016. Recent increase in debris flow activity in the Tatras Mountains: Results of a regional dendrogeomorphic reconstruction[J]. CATENA, 143: 221-231. doi: 10.1016/j.catena.2016.04.015
    TANG C, ZHU J, DING J, et al, 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8: 485-497. doi: 10.1007/s10346-011-0269-5
    TIE Y B, MALIK I, OWCZAREK P, 2014. Dendrochronological Dating of debris flow historical events in high mountain area: Take Daozao debris flow as an example[J]. Mountain Research, 32(2): 226-232. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2014.02.013
    WANG H Y, TONG K Y, HU G, et al., 2021. Dam and megafloods at the first bend of the Yangtze River since the Last Glacial Maximum[J]. Geomorphology, 373: 107491. doi: 10.1016/j.geomorph.2020.107491
    WANG P, WANG H Y, HU G, et al., 2021. A preliminary study on the development of dammed paleolakes in the Yarlung Tsangpo River Basin, southeastern Tibet[J]. Earth Science Frontiers, 28(2): 35-45. (in Chinese with English abstract)
    YANG H, CUI C G, WANG X F, et al. 2019. Research progresses of precipitation variation over the Yarlung Zangbo River basin under global climate warming[J]. Torrential Rain and Disasters, 38(6): 565-575.
    ZHANG P Q, LIU X H, KONG P, 2008. Evidence for glacial movement since last glacial period in the Great Canyon, Yarlung Zangbo, SE Tibet and its tectono-environmental implications[J]. Chinese Journal of Geology, 43(3): 588-602. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.2008.03.013
    ZHANG P Q, GAO M X, LEI Y L, et al, 2009. Quantitative terrain analysis of the great canyon region of Yalungzangbo River, Tibet and discussion of its origin[J]. Journal of Earth Science: 34(4): 595-603.
    ZHAO Q Y, WEI M J, SONG B, et al., 2013. TL evidence of debris flow developments in the Late Pleistocene of Yunnan Jiangjia Valley Basin[J]. Nuclear Electronics & Detection Technology, 33(7): 865-868. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-0934.2013.07.021
    ZHAO W J, 2015. The Formation characteristics and geomorphical evolution of the landslides and debris flow fans in Guide basin, the upper reaches of the Yellow River[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    ZHU S, 2012. River Landform and geological environment evolution in the Yarlung Zangbo River Vally[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    ZHU S, WU Z H, ZHAO X T, et al, 2013. The age of glacial dammed lakes in the Yarlung Zangbo River Grand Bend during Late Quaternary by OSL[J]. Acta Geoscientia Sinica, 34(2): 246-250. (in Chinese with English abstract)
    陈剑, 崔之久, 2014. 云南白马雪山垭口早更新世泥石流的发育特征及其古气候和构造意义[J]. 干旱区地理, 37(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201402001.htm
    程尊兰, 田金昌, 张正波, 等, 2009. 西藏江河堵溃灾害及成灾环境分析[J]. 灾害学, 24(1): 26-30. doi: 10.3969/j.issn.1000-811X.2009.01.006
    黄春长, 郭永强, 张玉柱, 等, 2019. 青海官亭盆地喇家遗址全新世地层序列与史前灾难研究[J]. 中国科学: 地球科学, 49(2): 434-455. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201902008.htm
    韩立明, 2018. 雅鲁藏布江卧龙至直白河段地质灾害发育特征及危险性评价[D]. 成都: 成都理工大学.
    李翠平, 王萍, 钱达, 等, 2015. 雅鲁藏布江大峡谷入口河段最近两期古堰塞湖事件的年龄[J]. 地震地质, 37(4): 1136-1146. doi: 10.3969/j.issn.0253-4967.2015.04.016
    刘湘伟, 2015. 雅鲁藏布江流域水文气象特性分析[D]. 北京: 清华大学.
    李永化, 张小咏, 崔之久, 等, 2002. 第四纪泥石流活动期与气候期的阶段性耦合过程[J]. 第四纪研究, 22(4): 340-348. doi: 10.3321/j.issn:1001-7410.2002.04.006
    刘宇平, MONTGOMERY D R, HALLET B, 等, 2006. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件[J]. 第四纪研究, 26(1): 52-62. doi: 10.3321/j.issn:1001-7410.2006.01.007
    铁永波, MALIK I, OWCZAREK P, 2014. 树木年代学在高寒山区泥石流历史事件重建中的应用: 以磨西河流域倒灶沟为例[J]. 山地学报, 32(2): 226-232. doi: 10.3969/j.issn.1008-2786.2014.02.013
    王萍, 王慧颖, 胡钢, 等, 2021. 雅鲁藏布江流域古堰塞湖群的发育及其地质意义初探[J]. 地学前缘, 28(2): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102004.htm
    杨浩, 崔春光, 王晓芳, 等, 2019. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 38(6): 565-575. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906001.htm
    张沛全, 刘小汉, 孔屏, 2008. 雅鲁藏布江大拐弯地区末次冰期以来的冰川活动证据及其构造-环境意义[J]. 地质科学, 43(3): 588-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803014.htm
    张沛全, 高明星, 雷永良, 等, 2009. 西藏雅鲁藏布江大拐弯地区量化地貌特征及其成因[J]. 地球科学(中国地质大学学报): 34(4): 595-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904005.htm
    赵秋月, 魏明建, 宋波, 等, 2013. 晚更新世云南蒋家沟流域泥石流发育的热释光证据[J]. 核电子学与探测技术, 33(7): 865-868. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201307020.htm
    赵无忌, 2015. 黄河上游贵德盆地滑坡泥石流扇发育特征及地貌演化过程[D]. 北京: 中国地质大学(北京).
    祝嵩, 2012. 雅鲁藏布江河谷地貌与地质环境演化[D]. 北京: 中国地质科学院.
    祝嵩, 吴珍汉, 赵希涛, 等, 2013. 用OSL方法确定雅鲁藏布江大拐弯第四纪晚期冰川堰塞湖年龄[J]. 地球学报, 34(2): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302017.htm
  • 加载中

Catalog

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (700) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return