Volume 28 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
MA Jianfei, LI Xiangquan, ZHANG Chunchao, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone. Journal of Geomechanics, 28 (6): 956-968. DOI: 10.12090/j.issn.1006-6616.20222823
Citation: MA Jianfei, LI Xiangquan, ZHANG Chunchao, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone. Journal of Geomechanics, 28 (6): 956-968. DOI: 10.12090/j.issn.1006-6616.20222823

Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone

doi: 10.12090/j.issn.1006-6616.20222823
Funds:

the Scientific Research Project of the Chinese Academy of Geological Sciences SK202205

the Geological Survey Project of the China Geological Survey DD20221812

More Information
  • Received: 2022-06-12
  • Revised: 2022-09-10
  • The complex hydrogeological structure and abundant karst water in the carbonate rock distribution area in the Jinshajiang fault zone's middle section are essential threats to engineering safety. Based on karst landform and hydrogeological investigations, the article presents the karst development characteristics in the Jinshajiang fault zone's middle section, and analyzes the recharge source, runoff process, and discharge characteristics of karst water using the methods of hydrochemical and new isotopic dating and tracing. The results show that structures control the spatial distribution of karst and the groundwater circulation in the study area. There are mainly three elevation-level karst development zones in the vertical direction. The development time of the second elevation-level karst is from the late Miocene to the late Pleistocene, and the top of the third elevation-level karst is from the Pliocene to the late Pleistocene. The karst water recharge area is at an elevation of 4400~4600 m. The primary recharge sources are atmospheric precipitation and glacial lake water. The 228Ra/226Ra data in the water shows that it is difficult for water sources under the control of a non-fixed-curvature fault to form recharge across the affected area of the fault. The karst water circulates fast, the 85Kr age of the karst spring is < 15 a, and there is basically no older groundwater mixing. Carbonate rock dissolution and cation exchange are not sufficient during groundwater runoff. In the engineering project, the spatial distribution of karst water runoff channels under the control of active faults, the influence of high-water-pressure and the threat of geological disasters caused by special weather conditions should be fully considered.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AVRAHAMOV N, YECHIELI Y, PURTSCHERT R, et al., 2018. Characterization of a carbonate karstic aquifer flow system using multiple radioactive noble gases (3H-3He, 85Kr, 39Ar) and 14C as environmental tracers[J]. Geochimica et Cosmochimica Acta, 242: 213-232. doi: 10.1016/j.gca.2018.09.009
    BOLLHÖFER A, SCHLOSSER C, SCHMID S, et al., 2019. Half a century of Krypton-85 activity concentration measured in air over Central Europe: Trends and relevance for dating young groundwater[J]. Journal of Environmental Radioactivity, 205-206: 7-16. doi: 10.1016/j.jenvrad.2019.04.014
    CLARK I D, FRITZ P, 1997. Environmental isotopes in hydrogeology[M]. Boca Raton: CRC Press.
    DONAHUE J, 1965. Laboratory growth of Pisolite grains[J]. Journal of Sedimentary Research, 35(1): 251-256. doi: 10.1306/74D7123A-2B21-11D7-8648000102C1865D
    FAN H B, ZHANG Y H, HE S Y, et al., 2018. Hazards and treatment of karst tunneling in Qinling-Daba mountainous area: overview and lessons learnt from Yichang-Wanzhou railway system[J]. Environmental Earth Sciences, 77(19): 679. doi: 10.1007/s12665-018-7860-1
    GAO C, LIU S Y, FENG J D, et al., 2021. Monitoring atmospheric 85Kr by atom counting[J]. Journal of Environmental Radioactivity, 233: 106604. doi: 10.1016/j.jenvrad.2021.106604
    GAO Q Z, CUI Z J, LIU G N, et al., 2000. The fission track ages of the cavernous recrystalline calcites in Tibet plateau and their geomorphologic significance[J]. Marine Geology & Quaternary Geology, 20(3): 61-65. (in Chinese with English abstract)
    GAO Q Z, CUI Z J, TAO Z, et al., 2002. The nature, formation age and genetic environment of the Palaeokarst on the Qinghai-Xizang plateau[J]. Acta Geographica Sinica, 57(3): 267-274. (in Chinese with English abstract) doi: 10.3321/j.issn:0375-5444.2002.03.002
    GAUTAM V K, KOTHARI M, SINGH P K, et al., 2022. Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan[J]. Journal of Groundwater Science and Engineering, 10(1): 1-9, doi: 10.19637/j.cnki.2305-7068.2022.01.001.
    JIANG Z C, ZHANG J, HUANG C, et al., 2019. Causes of formation and geo-scientific significance of karst gorge group in Xiangxi geopark[J]. Carsologica Sinica, 38(2): 269-275. (in Chinese with English abstract)
    KANG X B, YANG S F, GUAN Z D, et al., 2021. Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau[J]. Carsologica Sinica, 40(3): 381-388. (in Chinese with English abstract)
    KONG F C, YANG Y K, MA Y J, et al., 2021. The distribution and sources of radium isotopes in Da Qaidam Salt Lake[J]. Journal of Lake Sciences, 33(2): 632-646. (in Chinese with English abstract) doi: 10.18307/2021.0227
    LANG L, LIU J A, ZHONG Q Q, et al., 2020. Water mixing in the northern slope of the South China Sea as traced by 226Ra and 228Ra[J]. Marine Environmental Science, 39(4): 511-521. (in Chinese with English abstract)
    LI C S, DING J F, LIAO Y K, et al., 2020. Experimental study on karst dissolution action mechanism under tunnel excavation condition[M]//LI C S, DING J F, LIAO Y K, et al. Groundwater chemical kinetics and fractal characteristics of karst tunnel. Singapore: Springer: 117-148.
    LI S C, WANG X T, XU Z H, et al., 2021. Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity[J]. Engineering Geology, 281: 105967. doi: 10.1016/j.enggeo.2020.105967
    LI W J, WANG J L, WANG J L, 2018. Characteristics of the stable isotopes in precipitation and the source of water vapor in different terrain in the southwest region[J]. Resources and Environment in the Yangtze Basin, 27(5): 1132-1142. (in Chinese with English abstract) doi: 10.11870/cjlyzyyhj201805020
    LI X Q, MA J F, ZHANG C C, et al., 2021. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang railway[J]. Hydrogeology & Engineering Geology, 48(5): 34-45. (in Chinese with English abstract)
    LIAO F, WANG G C, YI L X, et al., 2020. Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China[J]. Journal of Hydrology, 585: 124782. doi: 10.1016/j.jhydrol.2020.124782
    LOOSLI H H, LEHMANN B E, SMETHIE JR W M, 2000. Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81Kr[M]//COOK P G, HERCZEG A L. Environmental tracers in subsurface hydrology. Boston: Springer: 379-396.
    LU Y R, 1999. Study on the evolution of karst hydrogeological environment and its engineering effect[M]. Beijing: Science Press. (in Chinese)
    LUO W Y, 2019. Characteristics of water-thermal hazard and hydrogeological route selection in typical sections of Sichuan-Tibet Railway[C]//Proceedings of Seminar on construction technology of Sichuan-Tibet Railway project. Xi'an: China Railway Society. (in Chinese with English abstract)
    LUO X, JIAO J J, WANG X S, et al., 2017. Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes[J]. Journal of Hydrology, 546: 189-203, doi: 10.1016/j.jhydrol.2017.01.017.
    LUO X, JIAO J J, MOORE W S, et al., 2018. Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary[J]. Water Research, 144: 603-615. doi: 10.1016/j.watres.2018.07.004
    MA J F, LI X Q, ZHANG C C, et al., 2022a. Recharge source, mode and development potential of typical tectonic karst groundwater in the eastern Qinghai-Xizang Plateau[J/OL]. Geology in China, (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.P.20220822.1417.016.html. (in Chinese with English abstract)
    MA J F, FU C C, ZHANG C C, et al., 2022b. Plateau tectonic karst development characteristics and underground conduits identification in the northern part of Kangding[J]. Bulletin of Geological Science and Technology, 41(1): 288-299. (in Chinese with English abstract)
    MA J F, LI X Q, LIU F, et al., 2022a. Application of hydrochemical and isotopic data to determine the origin and circulation conditions of karst groundwater in an alpine and gorge region in the Qinghai-Xizang Plateau: a case study of Genie Mountain[J]. Environmental Earth Sciences, 81(10): 291, doi: 10.1007/s12665-022-10414-9.
    MA J F, LI X Q, ZHANG C C, et al., 2022b. Identification of origin and runoff of karst groundwater in the glacial lake area of the Jinsha River fault zone, China[J]. Scientific Reports, 12(1): 14661. doi: 10.1038/s41598-022-18960-9
    MU W P, 2018. Mechanism of water inrush on faults of coal seam floor and prediction of dewatering rate from karst aquifers in Beiyangzhuang mine[D]. Beijing: China University of Mining and Technology. (in Chinese with English abstract)
    QIN Y L, WU J L, ZHAN H Y, et al., 2021. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan Province, China[J]. Journal of Geomechanics, 27(3): 463-474. (in Chinese with English abstract)
    SHEN J F, SHI Y H, YU Q C, et al., 1991. On the formation condition and prediction-method of karst caves in carbonate rocks[J]. Earth Science—Journal of China University of Geosciences, 16(1): 61-70. (in Chinese with English abstract)
    SHI X D, KANG X B, XU M, et al., 2019. Hydrochemical characteristics and evolution laws of karst grounderwater in the slope zone of the canyon area, Sichuan-Yunnan Plateau[J]. Acta Geologica Sinica, 93(11): 2975-2984. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2019.11.019
    SICHUAN LOCAL CHRONICLES COMPILATION COMMITTEE, 1996. Annals of Sichuan province [M]. Chengdu: Chengdu Cartographic Publishing House: 127. (in Chinese)
    TESFALDET Y T, PUTTIWONGRAK A, ARPORNTHIP T, 2020. Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand[J]. Journal of Groundwater Science and Engineering, 8(1): 10-19.
    WANG D J. 2021. Development characteristics of plateau karst and influences on the engineering in a tunnel area of southeast Tibet[J]. Tunnel Construction, 41(6): 996-1006. (in Chinese with English abstract)
    WENG J T, RU J W, 1982. Cave pearls[J]. Carsologica Sinica, 1(1): 58-65. (in Chinese with English abstract)
    XIA J W, ZHU M, 2020. Study on tectonic characteristics and activity of middle section of Jinshajiang Main Fault Zone[J]. Yangtze River, 51(5): 131-137, 159. (in Chinese with English abstract)
    XU H H, HU B, LIU W L, et al., 2020. Study on karst water drainage path in plateau karst area[J]. Yangtze River, 51(11): 128-133. (in Chinese with English abstract) doi: 10.11988/ckyyb.20190833
    XU Y P, XIANG X Q, YANG G L, 2020. Study on recharge, runoff and drainage of karst groundwater in Nanjiang Grand Canyon in Kaiyang[J]. Water Resources and Hydropower Engineering, 51(2): 53-59. (in Chinese with English abstract)
    XUE Y G, KONG F M, LI S C, et al., 2021. Water and mud inrush hazard in underground engineering: genesis, evolution and prevention[J]. Tunnelling and Underground Space Technology, 114: 103987. doi: 10.1016/j.tust.2021.103987
    YANG Z H, WU R A, GUO C B, et al., 2022. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the Western Sichuan[J]. Geology in China, 49(2): 355-368. (in Chinese with English abstract)
    YANG Z P, JIANG Y W, LI B, et al., 2020. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics, 26(4): 459-470. (in Chinese with English abstract)
    YAO T D, ZHOU H, YANG X X, 2009. Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan Plateau[J]. Chinese Science Bulletin, 54(16): 2724-2731, doi: 10.1007/s11434-009-0497-4. (in Chinese with English abstract)
    YOUNG M B, GONNEEA M E, FONG D A, et al., 2008. Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry[J]. Marine Chemistry, 109(3-4): 377-394. doi: 10.1016/j.marchem.2007.07.010
    YU J S, ZHANG H B, YU F J, et al., 1980. Oxygen isotopic composition of meteoric water in the eastern part of Xizang[J]. Geochimica, 9(2): 113-121. (in Chinese with English abstract)
    ZHANG C C, LI X Q, MA J F, et al., 2021. Formation model of geothermal water in Chaya of Tibet: perspective from hydrochemistry and stable isotopes[J]. Geoscience, 35(1): 199-208. (in Chinese with English abstract)
    ZHANG D, 1994. Distribution of Tibetan karren and their morphogenetic analysis[J]. Carsologica Sinica, 13(3): 270-280.
    ZHANG D, SHI C X, 2002. CO2 partial pressure, karst dissolution rate and karst micro-landforms on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 76(4): 566-570. (in Chinese with English abstract)
    ZHANG L, GUO L S, LIU S W, et al., 2021. Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone, Sichuan Province, China[J]. Acta Petrologica Sinica, 37(2): 589-598. (in Chinese with English abstract)
    ZHANG Y S, GUO C B, LI X Q, et al., 2021. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: current status and development direction[J]. Hydrogeology & Engineering Geology, 48(5): 1-12. (in Chinese with English abstract)
    ZHAO T S, GAO R X, 1985. Concealed karst development in eastern part of lower Liaohe river plain, Liaoning Province, and its hydrogeological significance[J]. Carsologica Sinica, 4(3): 257-266. (in Chinese with English abstract)
    ZHONG L M, XU M, WU M L, et al., 2018. Development of deep karst under the coupling of multistage flow systems: a case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in Eastern Sichuan[J]. Hydrogeology & Engineering Geology, 45(1): 45-51. (in Chinese with English abstract)
    高全洲, 崔之久, 刘耕年, 等, 2000. 青藏高原洞穴次生方解石的裂变径迹年代及地貌学意义[J]. 海洋地质与第四纪地质, 20(3): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200003012.htm
    高全洲, 崔之久, 陶贞, 等, 2002. 青藏高原古岩溶的性质、发育时代和环境特征[J]. 地理学报, 57(3): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200203001.htm
    蒋忠诚, 张晶, 黄超, 等, 2019. 湘西地质公园岩溶峡谷群成因及其地学意义[J]. 中国岩溶, 38(2): 269-275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902016.htm
    康小兵, 杨四福, 管振德, 等, 2021. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 40(3): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103002.htm
    孔凡翠, 杨英魁, 马玉军, 等, 2021. 大柴旦盐湖中镭同位素分布特征来源及示踪意义[J]. 湖泊科学, 33(2): 632-646. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202102028.htm
    郎琳, 刘建安, 钟强强, 等, 2020. 226Ra和228Ra对南海北部陆坡水团的示踪作用[J]. 海洋环境科学, 39(4): 511-521. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202004003.htm
    李维杰, 王建力, 王家录, 2018. 西南地区不同地形降水稳定同位素特征及其水汽来源[J]. 长江流域资源与环境, 27(5): 1132-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201805020.htm
    李向全, 马剑飞, 张春潮, 等, 2021. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 48(5): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105004.htm
    卢耀如, 1999. 岩溶水文地质环境演化与工程效应研究[M]. 北京: 科学出版社.
    罗文艺, 2019. 川藏铁路水-热灾害特征及典型段落水文地质选线探析[C]//川藏铁路工程建造技术研讨会. 西安: 中国铁道学会.
    马剑飞, 李向全, 张春潮, 等, 2022a. 青藏高原东部典型构造岩溶地下水补给来源、模式及开发利用潜力[J/OL]. 中国地质, (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.P.20220822.1417.016.html.
    马剑飞, 付昌昌, 张春潮, 等, 2022b. 康定北部高原构造岩溶发育特征与地下水径流带识别[J]. 地质科技通报, 41(1): 288-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202201031.htm
    穆文平, 2018. 北阳庄矿煤层底板断层突水机理与岩溶水疏降水量预测[D]. 北京: 中国矿业大学(北京).
    秦宇龙, 吴建亮, 詹涵钰, 等, 2021. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报, 27(3): 463-474. doi: 10.12090/j.issn.1006-6616.2021.27.03.042
    沈继方, 史毅虹, 于青春, 等, 1991. 碳酸盐岩中岩溶洞穴的形成条件及预测方法初探[J]. 地球科学——中国地质大学学报, 16(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199101007.htm
    史箫笛, 康小兵, 许模, 等, 2019. 川滇高原斜坡地带峡谷区岩溶水化学特征及演化规律[J]. 地质学报, 93(11): 2975-2984. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911019.htm
    四川省地方志编纂委员会, 1996. 四川省志·地理志(上下册)[M]. 成都: 成都地图出版社: 127.
    王杜江. 2021. 藏东南某隧址区高原型岩溶发育特征及工程影响[J]. 隧道建设, 41(6): 996-1006.
    翁金桃, 茹锦文, 1982. 穴珠[J]. 中国岩溶, 1(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198201010.htm
    夏金梧, 朱萌, 2020. 金沙江主断裂带中段构造特征与活动性研究[J]. 人民长江, 51(5): 131-137, 159. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202005022.htm
    许汉华, 胡斌, 刘文连, 等, 2020. 高原岩溶区岩溶水排泄路径研究[J]. 人民长江, 51(11): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202011022.htm
    徐一萍, 向喜琼, 杨根兰, 2020. 开阳南江大峡谷岩溶地下水补径排研究[J]. 水利水电技术, 51(2): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002005.htm
    杨志华, 吴瑞安, 郭长宝, 等, 2022. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质, 49(2): 355-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202202001.htm
    杨忠平, 蒋源文, 李滨, 等, 2020. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 26(4): 459-470. doi: 10.12090/j.issn.1006-6616.2020.26.04.039
    姚檀栋, 周行, 杨晓新, 2009. 印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响[J]. 科学通报, 54(15): 2124-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200915003.htm
    于津生, 张鸿斌, 虞福基, 等, 1980. 西藏东部大气降水氧同位素组成特征[J]. 地球化学, 9(2): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198002000.htm
    张春潮, 李向全, 马剑飞, 等, 2021. 基于水化学及稳定同位素的西藏察雅地下热水成因研究[J]. 现代地质, 35(1): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101022.htm
    章典, 师长兴, 2002. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 76(4): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200204023.htm
    张磊, 郭丽爽, 刘树文, 等, 2021. 四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征[J]. 岩石学报, 37(2): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202102016.htm
    张永双, 郭长宝, 李向全, 等, 2021. 川藏铁路廊道关键水工环地质问题: 现状与发展方向[J]. 水文地质工程地质, 48(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105001.htm
    赵天石, 高瑞袖, 1985. 辽宁省下辽河平原东部隐伏岩溶发育规律及水文地质意义[J]. 中国岩溶, 4(3): 257-266. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198503007.htm
    钟玲敏, 许模, 吴明亮, 等, 2018. 多级水流系统耦合下深部岩溶分异研究: 以川东隔挡式构造区中梁山背斜南段为例[J]. 水文地质工程地质, 45(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htm
  • 加载中

Catalog

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (662) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return