Volume 28 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
LI Changhu, LI Zhengzheng, WANG Qun, 2022. Analysis of the connectivity rate of the gently dipping structural plane of the foundation rock of an arch dam of a hydropower station in southwest China. Journal of Geomechanics, 28 (6): 948-955. DOI: 10.12090/j.issn.1006-6616.20222822
Citation: LI Changhu, LI Zhengzheng, WANG Qun, 2022. Analysis of the connectivity rate of the gently dipping structural plane of the foundation rock of an arch dam of a hydropower station in southwest China. Journal of Geomechanics, 28 (6): 948-955. DOI: 10.12090/j.issn.1006-6616.20222822

Analysis of the connectivity rate of the gently dipping structural plane of the foundation rock of an arch dam of a hydropower station in southwest China

doi: 10.12090/j.issn.1006-6616.20222822
Funds:

the Scienfic Project of the Northwest Engineering Corporation Limited XBY-KJ-2019-19

More Information
  • Received: 2022-06-05
  • Revised: 2022-09-18
  • The connectivity rate plays an essential role in the stability evaluation of engineering rock masses such as slopes and dam foundations. This paper takes the foundation rock mass of an arch dam of a hydropower station in southwest China as the research object. Based on the field-measured data and the self-developed fissure network simulation program, we used the Monte-Carlo stochastic simulation method to calculate the connectivity rate of the gently dipping structural planes and the strength parameters in different shear directions of rock mass on the left and right bank of the hydropower station. The results show that the connectivity rate of the left and right banks of the hydropower station is different in different shear directions, and the overall fissure connectivity rate is low. The fissure connectivity rate of the gently dipping structural planes at PD02 on the right bank is about 27.35%, the friction coefficient is 1.04, and the cohesion is 0.89 MPa. The research results can provide a theoretical reference for this and similar projects.

     

  • loading
  • CHEN G Q, WANG J C, WANG W, et al., 2017. Failure characteristics of rock mass with intermittent joints of different connecting rates under direct shear test[J]. Journal of Engineering Geology, 25(2): 322-329. (in Chinese with English abstract)
    CHEN X, LIAO Z H, LI D J, 2011. Experimental study of effects of joint inclination angle and connectivity rate on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 30(4): 781-789. (in Chinese with English abstract)
    DERSKI W, IZBICKI R, KISIEL I, et al., 2012. Rock and soil mechanics[M]. Amsterdam: Elsevier.
    DU J C, CHEN Z Y, WANG X G, 2003. Application of optimizing methods in calculating persistence ratio and comprehensive shear strength of jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 22(9): 1441-1447. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.09.008
    EINSTEIN H H, VENEZIANO D, BAECHER G B, et al., 1983. The effect of discontinuity persistence on rock slope stability[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(5): 227-236.
    FAN L M, HUANG R Q, 2003. Probability model for estimating connectivity rate of discontinuities and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 22(5): 723-727. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.05.007
    GAO M Z, JIN W C, ZHENG C J, et al., 2012. Real-time evolution and connectivity of mined crack network[J]. Journal of China Coal Society, 37(9): 1535-1540. (in Chinese with English abstract)
    HU Y F, ZHANG Y, JIN X G, 2011. Statistics of gentle angle rigid structural plane persistence ratio[J]. Hydrogeology and Engineering Geology, 38(4): 78-81. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.04.015
    HUANG R Q, FAN L M, 2003. Study on probability model of connectivity rate on nonuniform random discontinuities[J]. Progress in Natural Science, 13(6): 621-625. (in Chinese with English abstract) doi: 10.3321/j.issn:1002-008X.2003.06.010
    LI B, ZHANG W, WEN R, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: Engineering geological significance[J]. Journal of Geomechanics, 28(2): 191-202. (in Chinese with English abstract)
    LI M C, HAN S, ZHOU S B, et al., 2018. An improved computing method for 3D mechanical connectivity rates based on a polyhedral simulation model of discrete fracture network in rock masses[J]. Rock Mechanics and Rock Engineering, 51(6): 1789-1800. doi: 10.1007/s00603-018-1423-3
    LI Z, WU Z H, WANG J M, et al., 2021. Using EH4 audio-magnetotelluric sounder to detect the gigantic Qiaojia paleo-landslide and its structural characteristics[J]. Journal of Geomechanics, 27(2): 317-325. (in Chinese with English abstract)
    LIU C P, HAO W Z, WANG J L, et al., 2014. Effect of connectivity rate of dominant joints extending outward of the slope on high slope stability[J]. Journal of Yangtze River Scientific Research Institute, 31(12): 74-77. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5485.2014.12.015
    LIU X, JIN Y, LIN B T, et al., 2021. An integrated 3D fracture network reconstruction method based on microseismic events[J]. Journal of Natural Gas Science and Engineering, 95(2): 104182.
    QIU Z Q, GAO M Z, LYU Y C, et al., 2016. New calculation method for drilling three-dimensional connectivity rate and its engineering application[J]. Safety in Coal Mines, 47(10): 44-47. (in Chinese with English abstract)
    SHI L, LI X C, BAI B, et al., 2012. Research on open-pit platform slope stability under rainfall condition[J]. Rock and Soil Mechanics, 33(5): 1519-1526. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.05.038
    SUN P, WANG Y J, ZHAO Y F, 2020. Analysis on anti-sliding stability of gravity dam under consideration of anisotropic shear strength of dam foundation rock mass[J]. Water Resources and Hydropower Engineering, 51(4): 132-138. (in Chinese with English abstract)
    WANG H, CAO H, WAN C C, et al., 2014. A new method to predicte the joint connectivity rate in deep rock masses based on drill data[J]. China Mining Magazine, 23(S1): 165-168. (in Chinese with English abstract)
    WANG L H, BAI J L, SUN X S, et al., 2015. The triaxial loading and unloading mechanical properties of jointed rock masses with different joint connectivities[J]. Chinese Journal of Rock Mechanics and Engineering, 34(12): 2500-2508. (in Chinese with English abstract)
    WANG L H, BAI J L, SUN X S, et al., 2015. The triaxial loading and unloading mechanical properties of jointed rock masses with different joint connectivities[J]. Chinese Journal of Rock Mechanics and Engineering, 34(12): 2500-2508. (in Chinese with English abstract)
    WANG X G, JIA Z X, CHEN Z Y, 1998. An application of discontinuities network modeling principal to research of discontinuities connection ratio of jointed rock mass[J]. Water Resources and Hydropower Engineering, 29(10): 43-47. (in Chinese with English abstract)
    WANG X M, HUANG X Q, XIA L, et al., 2013. Characteristics of three-dimensional fracture persistence of abutment rock mass in Wudongde dam area[J]. Earth Science—Journal of China University of Geosciences, 38(3): 655-662. (in Chinese with English abstract)
    WU Q, TANG H M, WANG L Q, et al., 2008. Three-dimensional connectivity rate and shear strength parameters calculation based on a new modified method of mean trace length[J]. Chinese Journal of Rock Mechanics and Engineering, 27(S2): 3941-3949. (in Chinese with English abstract)
    XU C, DOWD P A, MARDIA K V, et al., 2006. A connectivity index for discrete fracture networks[J]. Mathematical Geology, 38(5): 611-634. doi: 10.1007/s11004-006-9029-9
    YAN M, ZHANG B B, LI J L, et al., 2021. Research on influence of pore structure connectivity of low gas permeability on coal seam permeability[J]. Safety in Coal Mines, 52(4): 31-38. (in Chinese with English abstract)
    YANG Z P, JIANG Y W, LI B, et al., 2020. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics, 26(4): 459-470. (in Chinese with English abstract)
    ZHANG H N, XU X Y, ZHENG Y, et al., 2022. Experimental and numerical study of the mechanism of block-flexure toppling failure in rock slopes[J]. Bulletin of Engineering Geology and the Environment, 81(1): 63.
    ZHOU H F, RAN T, CHEN B, et al., 2021. Failure modes and influence of interlaminar fracture zone connectivity on slope stability of bedding rock slope in Ya'an, West Sichuan[J]. Geoscience, 35(1): 137-144. (in Chinese with English abstract)
    ZHOU Y, ZHANG H J, WU S C, et al., 2015. Meso-research on mechanical properties of rock mass affected by joint connectivity rate[J]. Rock and Soil Mechanics, 36(S2): 29-36. (in Chinese with English abstract)
    ZHU R C, 2015. Study on complex water stability of third series sandstone of Beihuan tunnel[J]. Railway Investigation and Surveying, 41(6): 41-44. (in Chinese with English abstract)
    陈国庆, 王剑超, 王伟, 等, 2017. 不同连通率断续节理岩体直剪破坏特征[J]. 工程地质学报, 25(2): 322-329. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702008.htm
    陈新, 廖志红, 李德建, 2011. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 30(4): 781-789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104018.htm
    杜景灿, 陈祖煜, 汪小刚, 2003. 寻优方法在岩体结构面连通特性和综合抗剪强度研究中的应用[J]. 岩石力学与工程学报, 22(9): 1441-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200309007.htm
    范留明, 黄润秋, 2003. 岩体结构面连通率估计的概率模型及其工程应用[J]. 岩石力学与工程学报, 22(5): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200305007.htm
    高明忠, 金文城, 郑长江, 等, 2012. 采动裂隙网络实时演化及连通性特征[J]. 煤炭学报, 37(9): 1535-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209024.htm
    胡耀飞, 张勇, 靳晓光, 2011. 基于现场实测的缓倾硬性结构面连通率统计[J]. 水文地质工程地质, 38(4): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201104017.htm
    黄润秋, 范留明, 2003. 非均匀分布随机结构面连通率的概率模型研究[J]. 自然科学进展, 13(6): 621-625. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200306010.htm
    李彬, 张文, 文冉, 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析[J]. 地质力学学报, 28(2): 191-202. doi: 10.12090/j.issn.1006-6616.2021053
    李忠, 吴中海, 汪金明, 等, 2021. 利用EH4音频大地电磁测深仪探测巧家巨型古滑坡及其结构面特征[J]. 地质力学学报, 27(2): 317-325. doi: 10.12090/j.issn.1006-6616.2021.27.02.029
    刘冲平, 郝文忠, 王吉亮, 等, 2014. 顺坡向外倾优势裂隙连通率对高边坡稳定性影响分析[J]. 长江科学院院报, 31(12): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201412017.htm
    邱治强, 高明忠, 吕有厂, 等, 2016. 钻孔三维连通率计算新方法及工程应用[J]. 煤矿安全, 47(10): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201610012.htm
    石露, 李小春, 白冰, 等, 2012. 降雨条件下露天平台边坡的稳定性研究[J]. 岩土力学, 33(5): 1519-1526. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205038.htm
    孙平, 王玉杰, 赵宇飞, 2020. 考虑坝基岩体抗剪强度各向异性的重力坝抗滑稳定分析方法[J]. 水利水电技术, 51(4): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202004015.htm
    王贺, 曹辉, 万串串, 等, 2014. 深埋岩体结构面连通率预测的钻孔数据法[J]. 中国矿业, 23(S1): 165-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2014S1037.htm
    王乐华, 柏俊磊, 孙旭曙, 等, 2015. 不同连通率节理岩体三轴加卸荷力学特性试验研究[J]. 岩石力学与工程学报, 34(12): 2500-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201512014.htm
    汪小刚, 贾志欣, 陈祖煜, 1998. 岩石结构面网络模拟原理在节理岩体连通率研究中的应用[J]. 水利水电技术, 29(10): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ199810014.htm
    王晓明, 黄孝泉, 夏露, 等, 2013. 乌东德坝区拱座岩体三维裂隙连通率特征[J]. 地球科学—中国地质大学学报, 38(3): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303026.htm
    吴琼, 唐辉明, 王亮清, 等, 2008. 基于平均迹长修正新方法的岩体三维连通率及抗剪强度参数计算[J]. 岩石力学与工程学报, 27(S2): 3941-3949. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S2098.htm
    严敏, 张彬彬, 李锦良, 等, 2021. 低透气性煤孔隙结构连通率对煤层渗透性的影响规律研究[J]. 煤矿安全, 52(4): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202104006.htm
    杨忠平, 蒋源文, 李滨, 等, 2020. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 26(4): 459-470. doi: 10.12090/j.issn.1006-6616.2020.26.04.039
    周洪福, 冉涛, 陈波, 等, 2021. 川西顺层斜坡破坏模式及层间弱面连通率对斜坡稳定性的影响[J]. 现代地质, 35(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101015.htm
    周喻, 张怀静, 吴顺川, 等, 2015. 节理连通率对岩体力学特性影响的细观研究[J]. 岩石力学, 36(S2): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2004.htm
    朱容辰, 2015. 北环隧道第三系砂岩复杂水稳特性研究[J]. 铁道勘察, 41(6): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC201506013.htm
  • 加载中

Catalog

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (398) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return