Citation: | LI Tiancheng, FANG Weixuan, WANG Lei, et al., 2022. Application of integrated geophysical method in prospecting: A case study of the magnetite-type IOCG deposits in the Moon Mountain exploration area, Copiapo, Chile. Journal of Geomechanics, 28 (1): 22-35. DOI: 10.12090/j.issn.1006-6616.20222802 |
ARÉVALO C. 1995. MapaGeologico de La HojaCopiapo, III Región de Atacama[CM]. Servicio Nacional de Geología y Minería, Mapas Geológicos 8, escala 1: 100.000.
|
BENAVIDES J, KYSER T K, CLARK A H, et al., 2007. The Mantoverde iron oxide-copper-gold district, III Región, Chile: the role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization[J]. Economic Geology, 102(3): 415-440. doi: 10.2113/gsecongeo.102.3.415
|
BORICR, DÍAZ F, MAKSAEVV. 1990. Geología y Yacimientos Metalíferos de la Región de Antofagasta[Z]. Santiago, Chile: ServicioNacionalde Geologíay Minería, Boletín 40: 246.
|
DALLMEYER R D, BROWN M, GROCOTT J, et al., 1996. Mesozoic magmatic and tectonic events within the Andean plate boundary zone, 26°-27°30'S, North Chile: constraints from 40Ar/39Ar mineral ages[J]. The Journal of Geology, 104(1): 19-40. doi: 10.1086/629799
|
ESPINOZA S, VIVALLO W, HENRIQUEZ F. 1994. Geologia y genesis de mineralizaciónmetalica en el distritoferrífero de Cerro Imán, Copiapó, Chile[J]. Congreso Geológico Chileno, 7: 799-802.
|
FANG W X, LIU Y L, ZHANG S L, et al., 2009. Three types of continental geodynamics and metallogenic models for IOCG (Iron-oxide Copper Gold Deposits) from the global view[J]. Journal of Northwest University (Natural Science Edition), 39(3): 404-413. (in Chinese with English abstract)
|
FANG W X, 2012. R & D on new mapping technology of geochemical Lithofacies in prediction and exploration for Iron-Oxide Copper Gold Deposits (IOCG)[J]. Advances in Earth Science, 27(10): 1178-1184. (in Chinese with English abstract)
|
FANG W X, YANG X Y, GUO M H, et al., 2013. Relationships between alkaline Ti-Fe-Rich Gabbros and iron-oxide copper-gold deposits in the Baixila Ore District, Yunnan[J]. Geotectonicaet Metallogenia, 37(2): 242-261. (in Chinese with English abstract)
|
FANG W X, LI J X, 2014. Metallogenic regulations, controlling factors, and evolutions of iron oxide copper and gold deposits in Chile[J]. Advances in Earth Science, 29(9): 1011-1024. (in Chinese with English abstract)
|
FANG W X, DU Y L, LI J X, et al., 2018. Large scale structural petrography mapping technology and prospecting prediction[M]. Beijing: Geological Publishing House: 1-394. (in Chinese)
|
FANG W X, 2019. Magmatic intrusive tectonic system I: tectonic Lithofacies mapping and ore-predication[J]. Geotectonicaet Metallogenia, 43(3): 473-506. (in Chinese with English abstract)
|
FANG W X, WANG S C, JIA R X, et al., 2021. Theoretical innovation, technology research and development, and frontiers on large-scale mapping of tectonic lithofacies[J]. Mineral Exploration, 12(7): 1488-1518. (in Chinese with English abstract)
|
GIMENEZ M, ACOSTA G, ALVAREZ O, et al., 2019. The subduction of the Copiapó aseismic ridge, is the causing of the formation of metallic minerals deposits in North of Chile and Argentina?[J]. Geodesy and Geodynamics, 10(6): 471-476. doi: 10.1016/j.geog.2019.04.007
|
HERVÉ F, GODOY E, PARADA M A, et al., 1987. A general view on the Chilean-argentine Andes, with emphasis on their early history[M]//MONGER J W H, FRANCHETEAU J. Circum-Pacific Orogenic belts and evolution of the Pacific Ocean Basin. Washington: American Geophysical Union: 97-114.
|
HITZMAN M W, 2000. Iron oxide-Cu-Au deposits: what, where, whenand why[M]//PORTERT M. Hydrothermal iron oxide copper-gold and related deposits: a global perspective. Adelaide: PGC Publishing: 9-25.
|
LARA Land GODOY E. 1998. Mapa Geologico de La Hoja Quebrada Salitrosa, III Región de Atacama[R]. Santiago, Chile: Servicio Nacional de Geología y Minería, MapasGeológicos 4, escala 1: 100.000.
|
LI J W, ZHU G R, ZHANG D Q, et al., 2009. Discovery of Dongjun lead-zinc-silver deposit in Inner Mongolia: an integrated application of geological, geochemical and geophysical prospecting methods[J]. Mineral Deposits, 28(6): 830-837. (in Chinese with English abstract)
|
LI J X, FANG W X, LIU J J, 2011. Types and characteristics of regional tectonics and ore-field structures of iron oxide-copper-gold deposits in Chile[J]. Geology and Exploration, 47(2): 323-332. (in Chinese with English abstract)
|
LI T C, YANG X Y, PENG X M, et al., 2015. Geological characteristics and prospecting criteria of the magnetite deposits in Cerro Iman-Cerro Lunar-Cerro Norte area, central-northern Chile[J]. Mineral Exploration, 6(1): 77-85. (in Chinese with English abstract)
|
LIU R, MA J Q, LI Q C, et al., 2016. Gravity, magnetic and electric comprehensive geophysical prospecting for deep structures in HetaoBasin[J]. Journal of Geomechanics, 22(4): 943-954. (in Chinese with English abstract)
|
LV Q T, MENG G X, YAN J Y, et al., 2019. Multi-scale exploration of mineral system: concept and progress: a case study in the middle and lower reaches of the Yangtze River MetallogenicBelt[J]. Geology in China, 46(4): 673-689. (in Chinese with English abstract)
|
MAO J W, YU J J, YUAN S D, et al., 2008. Iron oxide-copper-gold deposits: characteristics, present research situation and ore prospecting[J]. Mineral Deposits, 27(3): 267-278. (in Chinese with English abstract)
|
MARSCHIK R, FONTBOTÉ L, 1996. Copper(-iron) mineralization and superposition of alteration events in the Punta del Cobre belt, northern Chile[M]//CAMUS E, SILLITOE R H, PETERSON R. Andean copper deposits: new discoveries, mineralisation, styles and metallogeny. Littleton, USA: Society of Economic Geologists, Special Publication 5: 171-189.
|
MARSCHIK R, FONTBOTÉ L, 2001. The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposits, Chile[J]. Economic Geology, 96(8): 1799-1826.
|
MATHUR R, MARSCHIK R, RUIZ J, et al., 2002. Age of mineralization of the CandelariaFe oxide Cu-Au deposit and the origin of the Chilean iron belt, based on Re-Osisotopes[J]. Economic Geology, 97(1): 59-71. doi: 10.2113/gsecongeo.97.1.59
|
MCCAFFERTY A E, PHILLIPS J D, HOFSTRA A H, et al., 2019. Crustal architecture beneath the southern Midcontinent (USA) and controls on Mesoproterozoic iron-oxide mineralization from 3D geophysical models[J]. Ore Geology Reviews, 111: 102966. doi: 10.1016/j.oregeorev.2019.102966
|
MPODOZIS C, RAMOS V, 1990. The Andes of Chile and Argentina: circum-Pacific council for energy and mineral resources[J]. Earth Science Series, 11: 59-90.
|
OYARZUN R, OYARZÚN J, MÉNARD J J, et al., 2003. The Cretaceous iron belt of northern Chile: role of oceanic plates, a superplume event, and a major shear zone[J]. Mineralium Deposita, 38(5): 640-646. doi: 10.1007/s00126-003-0359-y
|
RAMÍREZ L E, PALACIOS C, TOWNLEY B, et al., 2006. The MantosBlancos copper deposit: an upper Jurassic breccia-style hydrothermal system in the coastal range of northern Chile[J]. Mineralium Deposita, 41(3): 246-258. doi: 10.1007/s00126-006-0055-9
|
RYAN P J, LAWRENCE A L, JENKINS, R A, et al., 1995. The Candelaria copper-gold deposit, Chile[J]. Arizona Geological Society Digest, 20: 625-645. http://www.researchgate.net/publication/284671519_The_Candelaria_copper-gold_deposit_Chile
|
SHEN P, SHEN Y C, LIU T B, 2011. Geophysical-geological prospecting models for positioning prognosis of hidden metal deposits[J]. Earth Science Frontiers, 18(3): 284-292. (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=DXQY201103029&dbcode=CJFD&year=2011&dflag=pdfdown
|
SILLITOE R H, 2003. Iron oxide-copper-gold deposits: an Andean view[J]. Mineralium Deposita, 38(7): 787-812. doi: 10.1007/s00126-003-0379-7
|
SILLITOE R H, PERELLÓ J, 2005. Andean copper province: tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. Economic geology one hundredthanniversary volume 1905-2005. Littleton, Colorado: Society of Economic Geologists: 845-890.
|
SKIRROW R G, MURR J, SCHOFIELD A, et al., 2019. Mapping iron oxide Cu-Au (IOCG) mineral potential in Australia using aknowledge-driven mineral systems-based approach[J]. Ore Geology Reviews, 113: 103011. doi: 10.1016/j.oregeorev.2019.103011
|
STEIGER R H, JÄGER E, 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 36(3): 359-362. UYEDA S, KANAMORI H, 1979. Back-arc opening and the mode of subduction[J]. Journal of Geophysical Research, 84(B3): 1049-1061. doi: 10.1016/0012-821X(77)90060-7
|
VILA T. 1996. Geology of the MantoVerde copper deposit, northern Chile: a specularite-rich, hydrothermal-tectonic breccia related to the Atacama fault zone[M]//CAMUS F, SILLITOE R M, PETERSEN R. Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Littleton, USA: Society of Economic Geologists, Special Publication 5: 157-170.
|
VIVALLO W, ESPINOZA S, HENRÍQUEZ F. 1995. Metasomatismo y alteraciónhidrotermal en el Distrito Ferrífero Cerro Negro Norte, Copiapó, Chile[J]. RevistaGeológica de Chile, 22: 75-88.
|
ZHAI Y S, 2007. Earth system, metallogenic system to exploration system[J]. Earth Science Frontiers, 14(1): 172-181. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200701017.htm
|
ZHANG X C, 2003. The characteristics of the overseas iron-oxide Cu-Au deposits and the present situation of the studies[J]. Advance in Earth Sciences, 18(4): 551-560. (in Chinese with English abstract)
|
方维萱, 柳玉龙, 张守林, 等, 2009. 全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J]. 西北大学学报(自然科学版), 39(3): 404-413. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200903010.htm
|
方维萱, 2012. 论铁氧化物铜金型(IOCG)矿床地球化学岩相学填图新技术研发[J]. 地球科学进展, 27(10): 1178-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201210021.htm
|
方维萱, 杨新雨, 郭茂华, 等, 2013. 云南白锡腊碱性钛铁质辉长岩类与铁氧化物铜金型矿床关系研究[J]. 大地构造与成矿学, 37(2): 242-261. doi: 10.3969/j.issn.1001-1552.2013.02.008
|
方维萱, 李建旭, 2014. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 29(9): 1011-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201409005.htm
|
方维萱, 杜玉龙, 李建旭, 等, 2018. 大比例尺构造岩相学填图技术与找矿预测[M]. 北京: 地质出版社: 1-394.
|
方维萱, 2019. 岩浆侵入构造系统Ⅰ: 构造岩相学填图技术研发与找矿预测效果[J]. 大地构造与成矿学, 43(3): 473-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903008.htm
|
方维萱, 王寿成, 贾润幸, 等, 2021. 大比例尺构造岩相学填图理论创新、技术研发与发展方向[J]. 矿产勘查, 12(7): 1488-1518. doi: 10.3969/j.issn.1674-7801.2021.07.003
|
李建旭, 方维萱, 刘家军, 2011. 智利铁氧化物-铜-金矿床区域定位构造-矿田构造类型与特征[J]. 地质与勘探, 47(2): 323-332. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201102026.htm
|
李进文, 朱广仁, 张德全, 等, 2009. 内蒙古东珺铅锌银矿床的发现: 地物化综合找矿勘查方法的运用[J]. 矿床地质, 28(6): 830-837. doi: 10.3969/j.issn.0258-7106.2009.06.011
|
李天成, 杨新雨, 彭晓明, 等, 2015. 智利中北部赛罗伊曼-月亮山-赛罗诺尔戴磁铁矿矿床地质特征与找矿标志[J]. 矿产勘查, 6(1): 77-85. doi: 10.3969/j.issn.1674-7801.2015.01.010
|
刘嵘, 马见青, 李庆春, 等, 2016. 重磁电综合地球物理探测河套盆地深部结构[J]. 地质力学学报, 22(4): 943-954. doi: 10.3969/j.issn.1006-6616.2016.04.012
|
吕庆田, 孟贵祥, 严加永, 等, 2019. 成矿系统的多尺度探测: 概念与进展: 以长江中下游成矿带为例[J]. 中国地质, 46(4): 673-689. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904002.htm
|
毛景文, 余金杰, 袁顺达, 等, 2008. 铁氧化物-铜-金(IOCG)型矿床: 基本特征、研究现状与找矿勘查[J]. 矿床地质, 27(3): 267-278. doi: 10.3969/j.issn.0258-7106.2008.03.001
|
申萍, 沈远超, 刘铁兵, 2011. 隐伏矿体定位预测的地球物理-地质找矿模型: 以地质与EH4双源大地电磁测深技术结合为例[J]. 地学前缘, 18(3): 284-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201103029.htm
|
翟裕生, 2007. 地球系统、成矿系统到勘查系统[J]. 地学前缘, 14(1): 172-181. doi: 10.3321/j.issn:1005-2321.2007.01.017
|
张兴春, 2003. 国外铁氧化物铜-金矿床的特征及其研究现状[J]. 地球科学进展, 18(4): 551-560. doi: 10.3321/j.issn:1001-8166.2003.04.011
|