Volume 29 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
LI Gang, WANG Ning, ZHANG Kaixun, et al., 2023. Analysis of petroleum systems and assessment of petroleum resources in the West Barents Sea Basin, Arctic. Journal of Geomechanics, 29 (2): 174-187. DOI: 10.12090/j.issn.1006-6616.2022134
Citation: LI Gang, WANG Ning, ZHANG Kaixun, et al., 2023. Analysis of petroleum systems and assessment of petroleum resources in the West Barents Sea Basin, Arctic. Journal of Geomechanics, 29 (2): 174-187. DOI: 10.12090/j.issn.1006-6616.2022134

Analysis of petroleum systems and assessment of petroleum resources in the West Barents Sea Basin, Arctic

doi: 10.12090/j.issn.1006-6616.2022134
Funds:

the Geological Survey Project of the China Geological Survey DD20221810

the National Natural Science Foundation of China 91755104

More Information
  • Received: 2022-11-21
  • Revised: 2023-02-25
  • Accepted: 2023-03-01
  • The West Barents Sea Basin in the Arctic is one of the most promising petroleum basins in the world. With the latest data from the IHS database, this study investigated the petroleum geology of the basin, documented the distribution characteristics of petroleum resources, systematically analyzed the petroleum systems and plays, evaluated the resource potential, and predicted the favorable exploration fairways in the West Barents Sea Basin. The results show that regionally, discovered oil and gas accumulations are mainly distributed in the southwest area of the basin; stratigraphically, oil and gas reserves are mainly confined to the Jurassic and Triassic reservoirs, which host 72.6% and 15.5% of the total proved and probable reserves, respectively. The basin has two known petroleum systems: the Jurassic/Triassic composite petroleum system and the Permian/Carboniferous composite petroleum system. The resource evaluation by the Monte Carlo statistical methodology indicates that the means of undiscovered resources in the West Barents Sea Basin are 487.4×106 t of oil, 1375.6×109 m3 of gas, and 84.6×106 t of condensate, amounting to 1681.9×106 t, of which the gas accounts for 66.0%. Based on the results of resource evaluation and comprehensive analysis of petroleum geology, two favorable exploration fairways were selected: the favorable exploration zone of the Jurassic play and the favorable exploration zone of the Triassic play in the southern area of the basin.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ABAY T B, KARLSEN D A, PEDERSEN J H, et al., 2018. Thermal maturity, hydrocarbon potential and kerogen type of some Triassic-Lower Cretaceous sediments from the SW Barents Sea and Svalbard[J]. Petroleum Geoscience, 24(3): 349-373. doi: 10.1144/petgeo2017-035
    BAIG I, FALEIDE J I, JAHREN J, et al., 2016. Cenozoic exhumation on the southwestern Barents Shelf: estimates and uncertainties constrained from compaction and thermal maturity analyses[J]. Marine and Petroleum Geology, 73: 105-130. doi: 10.1016/j.marpetgeo.2016.02.024
    BARRÈRE C, EBBING J, GERNIGON L, 2009. Offshore prolongation of Caledonian structures and basement characterisation in the western Barents Sea from geophysical modelling[J]. Tectonophysics, 470(1-2): 71-88. doi: 10.1016/j.tecto.2008.07.012
    BERGHS G, MAHER H D JR, BRAATHEN A, 2011. Late Devonian transpressional tectonics in Spitsbergen, Svalbard, and implications for basement uplift of the Sørkapp-Hornsundhigh[J]. Journal of the Geological Society, 168(2): 441-456. doi: 10.1144/0016-76492010-046
    BJARNADÓTTIR L R, WINSBORROW M C M, ANDREASSEN K, 2014. Deglaciation of the central Barents Sea[J]. Quaternary Science Reviews, 92: 208-226. doi: 10.1016/j.quascirev.2013.09.012
    BRAATHEN A, BÆLUM K, MAHER H JR, et al., 2011. Growth of extensional faults and folds during deposition of an evaporite-dominated half-graben basin; the Carboniferous Billefjorden Trough, Svalbard[J]. Norwegian Journal of Geology, 91(3): 137-160.
    BAI K L, ZHAO Y D, 2021. Valuation model of the migration-accumulation coefficient in the geneticmethod for assessment of oil and gas resources[J]. Geology and Exploration, 57(3): 656-666. (in Chinese with English abstract)
    COEN R, 2018. Heritage and change in the Arctic: resources for the present, and the future. Robert C. Thomsen and LillRastadBjørst (eds). 2017. Aalborg: Aalborg University Press. 242 p, paperback. ISBN 978-87-7112-624-2. GBP 34[J]. Polar Record, 54(4): 293-294.
    COLPAERT A, PICKARD N, MIENERT J, et al., 2007.3D seismic analysis of an Upper Palaeozoic carbonate succession of the Eastern Finnmark Platform area, Norwegian Barents Sea[J]. Sedimentary Geology, 197(1-2): 79-98. doi: 10.1016/j.sedgeo.2006.09.001
    DORÉ A G, 1995. Barents sea geology, petroleum resources and commercial potential[J]. Arctic, 48(3): 207-221.
    DU X X, LIU J M, 2021. Prospects and directions of China's participation in the development and utilization of oil and gas resources in the Arctic[J]. Journal of Geomechanics, 27(5): 890-898. (in Chinese with English abstract)
    FALEIDE J I, GUDLAUGSSON S T, JACQUART G, 1984. Evolution of the western Barents Sea[J]. Marine and Petroleum Geology, 1(2): 123-150. doi: 10.1016/0264-8172(84)90082-5
    FALEIDE J I, VÅGNES E, GUDLAUGSSON S T, 1993. Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting[J]. Marine and Petroleum Geology, 10(3): 186-214. doi: 10.1016/0264-8172(93)90104-Z
    FALEIDE J I, BJØRLYKKE K, GABRIELSEN R H, 2015. Geology of the Norwegian continental shelf[M]//BJØRLYKKEK. Petroleum geoscience. 2nd ed. Berlin: Springer: 603-637.
    GAO J J, BAI G P, QIN Y Z, et al., 2010. Monte carlo simulation-a case study of MARIB-SHABWA Basin in Yemen[J]. Petroleum Geology & Experiment, 32(3): 305-308. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-6112.2010.03.020
    GAUTIER D L, BIRD K J, CHARPENTIER R R, et al., 2009. Assessment of undiscovered oil and gas in the arctic[J]. Science, 324(5931): 1175-1179. doi: 10.1126/science.1169467
    GENG W, SUN Z L, WU N Y, et al., 2020. Influence factors for gas hydrate formation and Decomposition in southwest Barents Sea: a review[J]. Marine Geology Frontiers, 36(9): 109-120. (in Chinese with English abstract)
    GLØRSTAD-CLARK E, FALEIDE J I, LUNDSCHIEN B A, et al., 2010. Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area[J]. Marine and Petroleum Geology, 27(7): 1448-1475. doi: 10.1016/j.marpetgeo.2010.02.008
    GUDLAUGSSON S T, FALEIDE J I, JOHANSEN S E, et al., 1998. Late Palaeozoic structural development of the South-western Barents Sea[J]. Marine and Petroleum Geology, 15(1): 73-102. doi: 10.1016/S0264-8172(97)00048-2
    GUO Q L, CHEN N S, LIU C L, et al., 2015. Research advance of hydrocarbon resource assessment method and a new assessment software system[J]. ActaPetroleiSinica, 36(10): 1305-1314. (in Chinese with English abstract)
    HE B, BAI G P, HE Y H, et al., 2018. Characteristics and favorable target optimization of hydrocarbon plays in the Gabon Coastal Basin[J]. China Petroleum Exploration, 23(3): 99-108. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7703.2018.03.012
    HOU P, TIAN Z J, ZHENG J Z, et al., 2014. Evaluation of conventional hydrocarbon resources in sedimentary basins of central Asia region[J]. Earth Science Frontiers, 21(3): 56-62. (in Chinese with English abstract)
    IHS Energy Group, 2020. Arctic Region Basin [DB/OL]. Basin Monitor, 2020. Database available from IHS Energy Group, 15 Inverness Way East, Englewood, Colorado, 80112, USA.
    LARSSEN G B, ELVEBAKK G, HENRIKSEN L B, et al., 2002. Upper Palaeozoiclithostratigraphy of the southern Norwegian BarentsSea[R]. NorskGeologiskUnderøkelser, Bulletin 444, 43. Geological Survey of Norway, Trondheim.
    LI X J, YANG C P, WU J Q, et al., 2018. Tectonic features of the Western Barents Sea and its evolution[J]. Marine Geology & Quaternary Geology, 38(2): 1-12. (in Chinese with English abstract)
    LIU J M, ZHAO Y, YIN J Y, et al., 2017. Arctic geology and oil and gas exploration[M]. Beijing: Geology Press. (in Chinese)
    LU J M, SHAO Z J, FANG D Y, et al., 2010. Analysis of oil-gas resources potential in the Arctic Circle[J]. Resources &Industries, 12(4): 29-33. (in Chinese with English abstract)
    LI J Z, WU X Z, ZHENG M, et al., 2016. General philosophy, method system and key technology of conventional and unconventionaloil & gas resource assessment[J]. Natural Gas Geoscience, 27(9): 1557-1565. (in Chinese with English abstract)
    MARELLO L, EBBING J, GERNIGON L, 2010. Magnetic basement study in the Barents Sea from inversion and forward modelling[J]. Tectonophysics, 493(1-2): 153-171. doi: 10.1016/j.tecto.2010.07.014
    Norwegian Petroleum Directorate, 2019.Geology of the Barents Sea[EB/OL]. (2019-01-23). https://www.npd.no/en/facts/publications/CO2-atlases/CO2-atlas-for-the-norwegian-continental-shelf/6-the-barents-sea/6.1-geology-of-the-barents-sea.
    TIAN N X, YIN J Y, TAO C Z, et al., 2017. Petroleum geology and resources assessment of major basins in Middle East and Central Asia[J]. Oil & Gas Geology, 38(3): 582-591. (in Chinese with English abstract)
    TIAN Z J, WU Y P, WANG Z M, et al., 2014. Global conventional oil and gas resource assessment and its potential[J]. Earth Science Frontiers, 21(3): 10-17. (in Chinese with English abstract)
    TONG X G, 2009. A discussion on the role of accumulation association in the exploratingevaluation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 31(6): 1-8. (in Chinese with English abstract)
    USGS (United States Geological Survey), 2019.World oil and gas resource assessments[EB/OL].[2021-01-01].https://www.usgs.gov/centers/central-energy-resources-science-center/science/world-oil-and-gas-resource-assessments.
    WANG D P, BAI G P, LU H M, et al., 2016. Analysis of petroleum systems and resources evaluation in the Zagros Foreland Basin[J]. Geoscience, 30(2): 361-372. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2016.02.011
    WANG D P, YIN J Y, TIAN N X, et al., 2017. Division and resource evaluation of hydrocarbon plays in the Senegal Basin, West Africa[J]. Geoscience, 31(6): 1201-1213. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.06.009
    WEI Y J, YANG T, GUO B C, et al., 2019. Oil and gas resources potentials, exploration fields and favorable zones in foreland thrust belts[J]. China Petroleum Exploration, 24(1): 46-59. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7703.2019.01.006
    WEN H M, XIAO C X, LI W, et al., 2002. Applications of the monte-Carlo method to the petroleum reserves estimation[J]. Journal of Chengdu University of Technology, 29(5): 487-492. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2002.05.003
    WORSLEY D, 2008. The post-Caledonian development of Svalbard and the western Barents Sea[J]. Polar Research, 27(3): 298-317. doi: 10.1111/j.1751-8369.2008.00085.x
    YANG J Y, LI J H, MAO X, 2013. Petroleum geology characteristics and prospect of basingroups in arctic region[J]. Chinese Journal of Polar Research, 25(3): 304-314. (in Chinese with English abstract)
    YU Y X, YIN J Y, ZHENG J Z, et al., 2015. Division and resources evaluation of hydrocarbon plays in the Amu Darya Basin, Central Asia[J]. Petroleum Exploration and Development, 42(6): 750-756. (in Chinese with English abstract)
    ZHANG K X, HAN S Q, WANG Z X, et al., 2018. Characteristics of petroleum systems and resources potential in the Afghan-Tajik Basin[J]. Geology in China, 45(5): 920-930. (in Chinese with English abstract)
    ZHANG K X, HAN S Q, MENG Q H, et al., 2020. Classification of sedimentary basins and distribution patterns of oil and gas resources in the Arctic[J]. Journal of Geomechanics, 26(6): 901-910. (in Chinese with English abstract)
    ZHAO Y, LIU J M, HAN S Q, et al., 2021. Polar Silk Road and Arctic petroleum and gas resources[J]. Journal of Geomechanics, 27(5): 880-889. (in Chinese with English abstract)
    ZHAO Z, LIANG Y B, HU J J, et al., 2014. Arctic oil and natural gas potential and exploration and development trend[J]. Earth ScienceFrontiers, 21(3): 47-55. (in Chinese with English abstract)
    白琨琳, 赵迎冬, 2021. 油气资源评价中成因法分析与运聚系数取值模型研究[J]. 地质与勘探, 57(3): 656-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202103019.htm
    杜星星, 刘建民, 2021. 中国参与北极油气资源开发利用前景与方向[J]. 地质力学学报, 27(5): 890-898. doi: 10.12090/j.issn.1006-6616.2021.27.05.072
    高济稷, 白国平, 秦养珍, 等, 2010. 蒙特卡洛模拟法在也门马里卜—夏布瓦盆地中的应用[J]. 石油实验地质, 32(3): 305-308.
    耿威, 孙治雷, 吴能友, 等, 2020. 巴伦支海西南部天然气水合物形成与分解影响因素[J]. 海洋地质前沿, 36(9): 109-120.
    郭秋麟, 陈宁生, 刘成林, 等, 2015. 油气资源评价方法研究进展与新一代评价软件系统[J]. 石油学报, 36(10): 1305-1314.
    何斌, 白国平, 贺永红, 等, 2018. 加蓬海岸盆地油气成藏组合特征及有利目标优选[J]. 中国石油勘探, 23(3): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201803013.htm
    侯平, 田作基, 郑俊章, 等, 2014. 中亚沉积盆地常规油气资源评价[J]. 地学前缘, 21(3): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403010.htm
    李学杰, 杨楚鹏, 吴峧歧, 等, 2018. 西巴伦支海地质构造特征及其演化[J]. 海洋地质与第四纪地质, 38(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201802001.htm
    刘建民, 赵越, 殷进银, 等, 2017. 北极地质与油气资源[M]. 北京: 地质出版社.
    卢景美, 邵滋军, 房殿勇, 等, 2010. 北极圈油气资源潜力分析[J]. 资源与产业, 12(4): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201004006.htm
    李建忠, 吴晓智, 郑民, 等. 2016. 常规与非常规油气资源评价的总体思路、方法体系与关键技术[J]. 天然气地球科学, 27(9): 1557-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609002.htm
    田纳新, 殷进垠, 陶崇智, 等, 2017. 中东-中亚地区重点盆地油气地质特征及资源评价[J]. 石油与天然气地质, 38(3): 582-591. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703018.htm
    田作基, 吴义平, 王兆明, 等, 2014. 全球常规油气资源评价及潜力分析[J]. 地学前缘, 21(3): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403003.htm
    童晓光, 2009. 论成藏组合在勘探评价中的意义[J]. 西南石油大学学报(自然科学版), 31(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200906000.htm
    王大鹏, 白国平, 陆红梅, 等, 2016. 扎格罗斯盆地含油气系统分析与资源潜力评价[J]. 现代地质, 30(2): 361-372.
    王大鹏, 殷进垠, 田纳新, 等, 2017. 塞内加尔盆地成藏组合划分与资源潜力评价[J]. 现代地质, 31(6): 1201-1213.
    蔚远江, 杨涛, 郭彬程, 等, 2019. 前陆冲断带油气资源潜力、勘探领域分析与有利区带优选[J]. 中国石油勘探, 24(1): 46-59.
    文环明, 肖慈珣, 李薇, 等, 2002. 蒙特卡洛法在油气储量估算中的应用[J]. 成都理工学院学报, 29(5): 487-492.
    杨静懿, 李江海, 毛翔, 2013. 北极地区盆地群油气地质特征及其资源潜力[J]. 极地研究, 25(3): 304-314. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201303012.htm
    余一欣, 殷进垠, 郑俊章, 等, 2015. 阿姆河盆地成藏组合划分与资源潜力评价[J]. 石油勘探与开发, 42(6): 750-756.
    张凯逊, 韩淑琴, 王宗秀, 等, 2018. 阿富汗—塔吉克盆地含油气系统特征与资源潜力[J]. 中国地质, 45(5): 920-930. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805004.htm
    张凯逊, 韩淑琴, 孟秋含, 等, 2020. 北极地区盆地分类与油气资源分布规律[J]. 地质力学学报, 26(6): 901-910. doi: 10.12090/j.issn.1006-6616.2020.26.06.071
    赵越, 刘建民, 韩淑琴, 等, 2021. 冰上丝绸之路与北极油气资源[J]. 地质力学学报, 27(5): 880-889. doi: 10.12090/j.issn.1006-6616.2021.27.05.071
    赵喆, 梁英波, 胡菁菁, 等, 2014. 北极地区含油气潜力及勘探开发趋势分析[J]. 地学前缘, 21(3): 47-55.
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (583) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return