Citation: | SUN Deliang, CHEN Danlu, MI Changlin, et al., 2023. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model. Journal of Geomechanics, 29 (2): 202-219. DOI: 10.12090/j.issn.1006-6616.2022128 |
ACHOUR Y, BOUMEZBEUR A, HADJI R, et al., 2017. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria[J]. Arabian Journal of Geosciences, 10(8): 194. doi: 10.1007/s12517-017-2980-6
|
BREIMAN L, 1996. Bagging predictors[J]. Machine Learning, 24(2): 123-140.
|
BRILL F, PASSUNI PINEDA S, ESPICHÁN CUYA B, et al., 2020. A data-mining approach towards damage modelling for El Niño events in Peru[J]. Geomatics, Natural Hazards and Risk, 11(1): 1966-1990. doi: 10.1080/19475705.2020.1818636
|
BUAH P A, ZHANG Y B, BAKAH D A Y, et al., 2019. Earthquake-induced landslide susceptibility analysis: The effect of DEM resolution[C]//2019 International Conference on Mechatronics, Remote Sensing, Information Systems and Industrial Information Technologies (ICMRSISIIT). Ghana: IEEE, 2019: 1-5.
|
CAN A, DAGDELENLER G, ERCANOGLU M, et al., 2019. Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: Comparison of training algorithms[J]. Bulletin of Engineering Geology and the Environment, 78: 89-102. doi: 10.1007/s10064-017-1034-3
|
CHEN W, POURGHASEMI H R, ZHAO Z, 2017. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping[J]. Geocarto International, 32(4): 367-385. doi: 10.1080/10106049.2016.1140824
|
CHEN W, PENG J B, HONG H Y, et al., 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China[J]. Science of the Total Environment, 626: 1121-1135. doi: 10.1016/j.scitotenv.2018.01.124
|
CHEN W, CHEN X, PENG J B, et al., 2021. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer[J]. Geoscience Frontiers, 12(1): 93-107. doi: 10.1016/j.gsf.2020.07.012
|
CRAMER H, EVERS V, RAMLAL S, et al., 2008. The effects of transparency on trust in and acceptance of a content-based art recommender[J]. User Modeling and User-Adapted Interaction, 18(5): 455-496. doi: 10.1007/s11257-008-9051-3
|
DAS I, STEIN A, KERLE N, et al., 2012. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models[J]. Geomorphology, 179: 116-125. doi: 10.1016/j.geomorph.2012.08.004
|
DAS J, KUMAR S, MISHRA D C, et al., 2023. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system[J]. Frontiers in Genetics, 13: 1085332. doi: 10.3389/fgene.2022.1085332
|
DIKSHIT A, PRADHAN B, ALAMRI A M, 2021. Pathways and challenges of the application of artificial intelligence to geohazards modelling[J]. Gondwana Research, 100: 290-301. doi: 10.1016/j.gr.2020.08.007
|
DOU J, YUNUS A P, TIEN BUI D, et al., 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 662: 332-346. doi: 10.1016/j.scitotenv.2019.01.221
|
EKMEKCIOǦLU Ö, KOC K, 2022. Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards[J]. CATENA, 216: 106379. doi: 10.1016/j.catena.2022.106379
|
FRIEDMAN J H, 2001. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 29(5): 1189-1232. doi: 10.1214/aos/1013203450
|
HERLOCKER J L, KONSTAN J A, RIEDL J, 2000. Explaining collaborative filtering recommendations[C]//Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. Philadelphia: Association for Computing Machinery: 241-250.
|
HONG H Y, SHAHABI H, SHIRZADI A, et al., 2019. Landslide susceptibility assessment at the Wuning area, China: A comparison between multi-criteria decision making, bivariate statistical and machine learning methods[J]. Natural Hazards, 96: 173-212. doi: 10.1007/s11069-018-3536-0
|
HUANG F M, YIN K L, HUANG J S, et al., 2017. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine[J]. Engineering Geology, 223: 11-22. doi: 10.1016/j.enggeo.2017.04.013
|
HUANG F M, CHEN J W, DU Z, et al., 2020. Landslide susceptibility prediction considering regional soil erosion based on machine-learning models[J]. ISPRS International Journal of Geo-Information, 9(6): 377. doi: 10.3390/ijgi9060377
|
KALANTAR B, PRADHAN B, NAGHIBI S A, et al., 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN)[J]. Geomatics, Natural Hazards and Risk, 9(1): 49-69. doi: 10.1080/19475705.2017.1407368
|
KAVZOGLU T, SAHIN E K, COLKESEN I, 2015. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm[J]. Engineering Geology, 192: 101-112. doi: 10.1016/j.enggeo.2015.04.004
|
KURADUSENGE M, KUMARAN S, ZENNARO M, 2020. Rainfall-induced landslide prediction using machine learning models: The case of Ngororero District, Rwanda[J]. International Journal of Environmental Research and Public Health, 17(11): 4147. doi: 10.3390/ijerph17114147
|
LIU C Z, WEN M S, TANG C, 2004. Meteorological early warning of geo-hazards in China based on raining forecast[J]. Geological Bulletin of China, 23(4): 303-309. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2004.04.001
|
LIU R, SHI S X, SUN D L, et al., 2020. Based on GIS and random forest model for landslide susceptibility mapping in Wushan County[J]. Journal of Chongqing Normal University (Natural Science), 37(3): 86-96. (in Chinese with English abstract)
|
LUNDBERG S M, LEE S I, 2017. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. : 4768-4777.
|
MARJANOVIĆ M, KOVAǦEVIĆ M, BAJAT B, et al., 2011. Landslide susceptibility assessment using SVM machine learning algorithm[J]. Engineering Geology, 123(3): 225-234. doi: 10.1016/j.enggeo.2011.09.006
|
MILNE F D, BROWN M J, KNAPPETT J A, et al., 2012. Centrifuge modelling of hillslope debris flow initiation[J]. CATENA, 92: 162-171. doi: 10.1016/j.catena.2011.12.001
|
MOAYEDI H, MEHRABI M, MOSALLANEZHAD M, et al., 2019. Modification of landslide susceptibility mapping using optimized PSO-ANN technique[J]. Engineering with Computers, 35(3): 967-984. doi: 10.1007/s00366-018-0644-0
|
MOOSAVI V, NIAZI Y, 2016. Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping[J]. Landslides, 13: 97-114. doi: 10.1007/s10346-014-0547-0
|
NAGHIBI S A, AHMADI K, DANESHI A, 2017. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping[J]. Water Resources Management, 31(9): 2761-2775. doi: 10.1007/s11269-017-1660-3
|
NGO P T T, PANAHI M, KHOSRAVI K, et al., 2021. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran[J]. Geoscience Frontiers, 12(2): 505-519. doi: 10.1016/j.gsf.2020.06.013
|
PHAM B T, NGUYEN-THOI T, QI C C, et al., 2020. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping[J]. CATENA, 195: 104805. doi: 10.1016/j.catena.2020.104805
|
REICHENBACH P, ROSSI M, MALAMUD B D, et al., 2018. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 180: 60-91. doi: 10.1016/j.earscirev.2018.03.001
|
SAHIN E K, COLKESEN I, KAVZOGLU T, 2020. A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping[J]. Geocarto International, 35(4): 341-363. doi: 10.1080/10106049.2018.1516248
|
STUMPF A, KERLE N, 2011. Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 115(10): 2564-2577. doi: 10.1016/j.rse.2011.05.013
|
SUN D L, 2019. Mapping landslide susceptibility based on machine learning and forecast warning of landslide induced by rainfall[D]. Shanghai: East China Normal University. (in Chinese with English abstract)
|
SUN D L, WEN H J, WANG D Z, et al., 2020a. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm[J]. Geomorphology, 362: 107201. doi: 10.1016/j.geomorph.2020.107201
|
SUN D L, XU J H, WEN H J, et al., 2020b. An optimized random forest model and its generalization ability in landslide susceptibility mapping: Application in two areas of Three Gorges Reservoir, China[J]. Journal of Earth Science, 31(6): 1068-1086. doi: 10.1007/s12583-020-1072-9
|
SUN D L, SHI S X, WEN H J, et al., 2021a. A hybrid optimization method of factor screening predicated on GeoDetector and random forest for landslide susceptibility mapping[J]. Geomorphology, 379: 107623. doi: 10.1016/j.geomorph.2021.107623
|
SUN D L, XU J H, WEN H J, et al., 2021b. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest[J]. Engineering Geology, 281: 105972. doi: 10.1016/j.enggeo.2020.105972
|
SUN D L, DING Y K, ZHANG J L, et al., 2022. Essential insights into decision mechanism of landslide susceptibility mapping based on different machine learning models[J]. Geocarto International, 1-29.
|
TIAN Y Y, XU C, HONG H Y, et al., 2019. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: An example of the 2013 Minxian (China) Mw 5.9 event[J]. Geomatics, Natural Hazards and Risk, 10(1): 1-25. doi: 10.1080/19475705.2018.1487471
|
WANG Y, FANG Z C, HONG H Y, 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China[J]. Science of the Total Environment, 666: 975-993. doi: 10.1016/j.scitotenv.2019.02.263
|
WANG Y, SUN D L, WEN H J, et al., 2020. Comparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang County (Chongqing, China)[J]. International Journal of Environmental Research and Public Health, 17(12): 4206. doi: 10.3390/ijerph17124206
|
WANG Y, WEN H J, SUN D L, et al, 2021. Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector [J]. Remote Sensing, 13(13).
|
WU J H, ZHANG C S, MENG H J, et al., 2021. Temporal and spatial characteristics of landslide susceptibility in the west open-pit mining area, Fushun, China[J]. Journal of Geomechanics, 27(3): 409-417. (in Chinese with English abstract)
|
WU C W, LIANG J H, WANG W, et al., 2017. Random Forest Algorithm Based on Recursive Feature Elimination[J]. Statistics & Decision, 489(21): 60-63. (in Chinese with English abstract)
|
XIE C Y, 2011. Landslides hazard susceptibility evaluation based on weighting model[J]. Journal of Central South University (Science and Technology), 42(6): 1772-1779. (in Chinese with English abstract)
|
YANG J T, SONG C, YANG Y, et al., 2019. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China[J]. Geomorphology, 324: 62-71. doi: 10.1016/j.geomorph.2018.09.019
|
YANG Y G, YIN K L, ZHAO H Y, et al., 2019. Landslide susceptibility evaluation for township units of bank section in Wanzhou District based on C5.0 decision tree and K-means cluster model[J]. Geological Science and Technology Information, 38(6): 189-197. (in Chinese with English abstract)
|
YI Y N, ZHANG Z J, ZHANG W C, et al., 2020. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region[J]. CATENA, 195: 104851. doi: 10.1016/j.catena.2020.104851
|
ZHANG H, GAO Y, LI B, et al., 2022. Numerical simulation analysis of the solid-liquid coupling process in a hybrid landslide: A case study of the Wushanping landslide[J]. Journal of Geomechanics, 28(6): 1104-1114. (in Chinese with English abstract)
|
ZHANG Y L, WEN H J, XIE P, et al., 2021. Hybrid-optimized logistic regression model of landslide susceptibility along mountain highway[J]. Bulletin of Engineering Geology and the Environment, 80(10): 7385-7401. doi: 10.1007/s10064-021-02415-y
|
ZHOU X Z, WEN H J, ZHANG Y L, et al., 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization[J]. Geoscience Frontiers, 12: 101211. doi: 10.1016/j.gsf.2021.101211
|
ZHOU X Z, WEN H J, LI Z W, et al., 2022. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost[J]. Geocarto International, 37(26): 13419-13450. doi: 10.1080/10106049.2022.2076928
|
刘传正, 温铭生, 唐灿, 2004. 中国地质灾害气象预警初步研究[J]. 地质通报, 23(4): 303-309. doi: 10.3969/j.issn.1671-2552.2004.04.001
|
刘睿, 施婌娴, 孙德亮, 等, 2020. 基于GIS与随机森林的巫山县滑坡易发性区划[J]. 重庆师范大学学报(自然科学版), 37(3): 86-96. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202003012.htm
|
孙德亮, 2019. 基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究[D]. 上海: 华东师范大学.
|
吴辰文, 梁靖涵, 王伟, 等, 2017. 基于递归特征消除方法的随机森林算法[J]. 统计与决策, 489(21): 60-63.
|
吴季寰, 张春山, 孟华君, 等, 2021. 抚顺西露天矿区滑坡易发性评价与时空特征分析[J]. 地质力学学报, 27(3): 409-417. doi: 10.12090/j.issn.1006-6616.2021.27.03.037
|
解传银, 2011. 基于权重模型的滑坡灾害敏感性评价[J]. 中南大学学报(自然科学版), 42(6): 1772-1779.
|
杨永刚, 殷坤龙, 赵海燕, 等, 2019. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm
|
张晗, 高杨, 李滨, 等, 2022. 复合型滑坡固液耦合过程数值模拟分析: 以无山坪滑坡为例[J]. 地质力学学报, 28(6): 1104-1114. doi: 10.12090/j.issn.1006-6616.20222832
|