Volume 29 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
REN Xincheng, XIU Jinlei, LIU Lin, et al., 2023. Late Paleozoic-Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin. Journal of Geomechanics, 29 (2): 155-173. DOI: 10.12090/j.issn.1006-6616.2022113
Citation: REN Xincheng, XIU Jinlei, LIU Lin, et al., 2023. Late Paleozoic-Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin. Journal of Geomechanics, 29 (2): 155-173. DOI: 10.12090/j.issn.1006-6616.2022113

Late Paleozoic-Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin

doi: 10.12090/j.issn.1006-6616.2022113

the Key Scientific and Technological Project of the China Petroleum & Chemical Corporation P21077-2

the Scientific and Technological Project of the Shengli Oilfield YKK2121

More Information
  • Received: 2022-09-11
  • Revised: 2023-01-10
  • Accepted: 2023-01-13
  • The eastern Junggar has experienced multistage intra-continental deformations since the late Paleozoic. The checkerboard structure is one of the most notable features of the Junggar Basin, especially the eastern Junggar Basin, and its formation and evolution is a microcosm of the intracontinental deformation within the Central Asian Orogenic Belt. However, it needs to be clarified how and when the checkerboard structure developed within the Junggar Basin. In this study, we focused on Permian-Cenozoic deformations around the Junggar Basin. We proposed that the deformation was mainly driven by plate margin interaction, especially by the Tethys tectonic domain. During the Late Permian, the Junggar Basin experienced the nearly EW-trending compression, which resulted in the overall deformation of the basin and the formation of a series of nearly N-S-trending thrust faults and related folds, laying the foundation for the chessboard structure of the eastern Junggar Basin and even the entire basin. The Junggar Basin and its surrounding basins experienced regional extension during the Early-Middle Jurassic. An important sinistral transtension event occurred in the northeastern and northwestern margins of the basin, forming the large-scale strike-slip duplexes. During the Late Jurassic, the eastern Junggar Basin experienced nearly E-W shortening, which resulted in the nearly N-S-trending folding of the pre-Jurassic strata and further strengthened the original N-S-trending folds and faults. The driving force for the Late Jurassic deformation may result from the Tethys tectonic domain to the south, which also caused a clockwise rotation of the Junggar Basin. During the Late Cretaceous, the eastern Junggar Basin experienced nearly N-S-trending shortening, which led to the deformation of the previous N-S-trending folds and faults and the finalization of the checkerboard structural style. During the late Cenozoic, the eastern Junggar Basin was affected by the far-field effect of the India-Eurasian collision, but the intensity and sphere were relatively weak.


  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ALLEN M B, WINDLEY B F, ZHANG C, 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 220(1-4): 89-115, doi: 10.1016/0040-1951(93)90225-9.
    ALLEN M B, ALSOP G I, ZHEMCHUZHNIKOV V G, 2001. Dome and basin refolding and transpressive inversion along the Karatau fault system, southern Kazakstan[J]. Journal of the Geological Society, 158(1): 83-95, doi: 10.1144/jgs.158.1.83.
    BGMRXUAR (Bureau of Geology Mineral Resources of Xinjiang Uygur Autonomous Region), 1993. Regional geology of Xinjiang uygur autonomous region[M]. Beijing: Geological Publishing House. (in Chinese)
    CAI Z H, XU Z Q, HE B Z, et al., 2012. Age and tectonic evolution of ductile shear zones in the eastern Tianshan Beishan orogenic belt[J]. Acta Petrologica Sinica, 28(6): 1875-1895. (in Chinese with English abstract)
    CAO K, WANG G C, VAN DER BEEK P, et al., 2013. Cenozoic thermo-tectonic evolution of the northeastern Pamir revealed by zircon and apatite fission-track thermochronology[J]. Tectonophysics, 589: 17-32. doi: 10.1016/j.tecto.2012.12.038
    CHEN B, JAHN B M, 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence[J]. Journal of Asian Earth Science, 23(5): 691-703, doi: 10.1016/s1367-9120(3)00118-4.
    CHEN W, SUN S, ZHANG Y, et al., 2005. 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in east Tianshan, Xinjiang, NW China[J]. Acta Geologica Sinica, 79(6): 790-804. (in Chinese with English abstract)
    DE GRAVE J, BUSLOV M M, VAN DEN HAUTE P, 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology[J]. Journal of Asian Earth Sciences, 29(2-3): 188-204, doi: 10.1016/j.jseaes.2006.03.001.
    DE GRAVE J, GLORIE S, BUSLOV M M, et al., 2011. The thermo-tectonic history of the Song-Kul plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite thermochronometry and zircon U/Pb dating[J]. Gondwana Research, 20(4): 745-763. doi: 10.1016/j.gr.2011.03.011
    DE JONG K, WANG B, FAURE M, et al., 2009. New 40Ar/39Ar age constraints on the Late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress[J]. International Journal of Earth Sciences, 98(6): 1239-1258, doi: 10.1007/s00531-008-0338-8.
    DU Q X, HAN Z Z, SHEN X L, et al., 2018. Zircon U-Pb geochronology and geochemistry of the post-collisional volcanic rocks in eastern Xinjiang Province, NW China: Implications for the tectonic evolution of the Junggar terrane[J]. International Geology Review, 60(3): 339-364, doi: 10.1080/00206814.2017.1335243.
    DUMITRU T A, ZHOU D, CHANG E Z, et al., 2001. Uplift, exhumation, and deformation in the Chinese Tian Shan[M]//HENDRIX M S, DAVIS G A. Paleozoic andMesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Boulder: Geological Society of America Memoir: 71-99.
    FANG A M, WANG S G, ZHANG J M, et al., 2015. The U-Pb ages of zircons from the gabbro in the Kalamaili ophiolite, North Xinjiang and its tectonic significances[J]. Chinese JournalofGeology, 50(1): 140-154. (in Chinese with English abstract)
    FANG W X, 2022. On research methodology for deformation history of tectonic lithofacies in sedimentary basin and their application[J]. Journal of Geomechanics, 28 (1): 1-21(in Chinese with English abstract).
    FENG Y, COLEMAN R G, TILTON G, et al., 1989. Tectonic evolution of the west Junggar region, Xinjiang, China[J]. Tectonics, 8(4): 729-752, doi: 10.1029/tc008i004p00729.
    GAN L, TANG H F, HAN Y J, 2010. Geochronology and geochemical characteristics of the Yemaquan granitic pluton in East Junggar, Xinjiang[J]. Acta Petrologica Sinica, 26(8): 2374-2388. (in Chinese with English abstract)
    GUO L S, ZHANG R, LIU Y L, et al., 2009. Zircon U-Pb age of Tonghualing intermediate-acid intrusive rocks, eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(5): 819-824. (in Chinese with English abstract)
    HAN B F, JI J Q, SONG B, et al., 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisionai plutonism[J]. Acta Petrologica Sinica, 22(5): 1077-1086. (in Chinese with English abstract)
    HAN Y G, ZHAO G C, 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 186: 129-152, doi: 10.1016/j.earscirev.2017.09.012.
    HAN Y J, TANG H F, GAN L, 2012. Zircon U-Pb ages and geochemical characteristics of the Laoyaquan a-type granites in east Junggar, north Xinjiang, China[J]. Acta Mineralogica Sinica, 32(2): 193-199. (in Chinese with English abstract)
    HE D F, ZHAI G N, KUANG J, et al., 2005. Distribution and tectonic features of Paleo-uplits in the Junggar Basin[J]. Chinese Journal of Geology, 40(2): 248-261. (in Chinese with English abstract)
    HE D F, ZHOU L, WU X Z, 2012. Formation and evolution and hydrocarbon accumulation of paleo-uplifts in Junggar Basin[M]. Beijing: Petroleum Industry Press. (in Chinese)
    HE G Q, LI M S, LIU D Q, et al., 1994. Paleozoic crustal evolution and mineralization in Xinjiang of China[M]. Urumqi: Xinjiang People's Publishing House. (in Chinese)
    HE G Q, LU S N, LI M S, 1995. Tectonic significance of large fault systems to the study of paleo-plates[J]. Geological Journal of Universitiesf, 1(1): 1-10. (in Chinese with English abstract)
    HE G Q, LI M S, 2001. Significance of paleostructure and paleogeography of Ordovician-Silurian rock associations in Northern Xinjiang, China[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 37(1): 99-110. (in Chinese with English abstract)
    HE G Q, LI M S, JIA J D, et al., 2001. A discussion on age and tectonic significance of ophiolite in eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 852-858. (in Chinese with English abstract)
    HE X Y, FANG T H, BO H T, et al., 2022. Petrogenesis and tectonic significance of Late Permian-Middle Triassic granitoids in Guobaoshan, eastern section of the eastern Tianshan mountains: Constraints from geochronology and geochemistry[J]. Journal of Geomechanics, 28 (1): 126-142(in Chinese with English abstract).
    HENDRIX M S, GRAHAM S A, CARROLL A R, 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China[J]. GSA Bulletin, 104(1): 53-79. doi: 10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2
    HUANG B, FU D, KUSKY T, et al., 2018. Sedimentary provenance in response to Carboniferous arc-basin evolution of East Junggar and North Tianshan belts in the southwestern Central Asian Orogenic Belt[J]. Tectonophysics, 722: 324-341, doi: 1016/j.tecto.2017.11.015.
    HUANG G, NIU G Z, WANG X L, et al., 2012. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U-Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang[J]. Geological Bulletin of China, 31(8): 1267-1278. (in Chinese with English abstract)
    HUANG G, NIU G Z, WANG X L, et al., 2016a. Early Silurian adakitic rocks of East Junggar, Xinjiang: Evidence from zircon U-Pb age, geochemistry and Sr-Nd-Hf isotope of the quartz diorite[J]. Acta Petrologica et Mineralogica, 35(5): 751-767. (in Chinese with English abstract)
    HUANG G, NIU G Z, WANG X L, et al., 2016b. The Early Silurian arc magmatic rocks of East Junggar, Xinjiang: Evidences from geochemistry, zircon U-Pb age and Hf isotopes of the Jianggeerkuduke quartz monzobiorite[J]. Geoscience, 30(6): 1219-1233. (in Chinese with English abstract)
    JAHN B M, WU F Y, CHEN B, 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. doi: 10.1017/S0263593300007367
    JIAN P, LIU D Y, SHI Y R, et al., 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the central Asian orogenic belt[M]//SKLYAROV E V. Structural and tectonic correlation across the central Asia Orogenic collage: North-Eastern segment. Guidebook and abstract volume of the Siberian workshop. Irkutsk: 246-251.
    JOLIVET M, RITZ J F, VASSALLO R, et al., 2007. Mongolian summits: An uplifted, flat, old but still preserved erosion surface[J]. Geology, 35(10): 871-874. doi: 10.1130/G23758A.1
    JOLIVET M, DOMINGUEZ S, CHARREAU J, et al., 2010. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation[J]. Tectonics, 29(1): TC6019.
    LAURENT-CHARVET S, CHARVET J, SHU L S, et al., 2002. Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China[J]. Terra Nova, 14(4): 249-256, doi: 10.1046/j.1365-3121.2002.00417.x.
    LAURENT-CHARVET S, CHARVET J, MONIÉP, et al., 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data[J]. Tectonics, 22(2): 1009, doi: 10.1029/2001tc901047.
    LI J Y, ZHU B Q, FENG Y M, 1989. Confirmation of the unconformable relationships between the Nanmingshui Formation and ophiolites and their significance[J]. Regional Geology of China(3): 250-255. (in Chinese with English abstract)
    LI J Y, XIAO X C, TANG Y Q, et al., 1990. Main characteristics of Late Paleozoic plate tectonics in the southern part of east Junggar, Xinjiang[J]. Geological Review, 36(4): 305-316. (in Chinese with English abstract)
    LI J Y, 1991. Early Paleozoic evolution of lithosphere plate, east Junggar, Xinjiang[C]//On tectonic evolution of the southern margin of the Paleozoic composite megasuture zoneedited. Beijing: Geological Publishing House: 92-108. (in Chinese with English abstract)
    LI J Y, 1995. Main characteristics and emplacement processes of the East Junggar ophiolites, Xinjiang, China[J]. Acta Petrologica Sinica, 11(S1): 73-84. (in Chinese with English abstract)
    LI J Y, ZHANG J, YANG T N, et al., 2009. Crustal tectonic division and evolution of the southern part of the north Asian Orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584-605. (in Chinese with English abstract)
    LI P F, SUN M, ROSENBAUM G, et al., 2017. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt[J]. GSA Bulletin, 129(5-6): 547-569. doi: 10.1130/B31541.1
    LI P F, SUN M, ROSENBAUM G, et al., 2020. Tectonic evolution of the Chinese Tianshan Orogen from subduction to arc-continent collision: Insight from polyphase deformation along the Gangou section, Central Asia[J]. GSA Bulletin, 132(11-12): 2529-2552, doi: 10.1130/B35353.1.
    LI P F, SUN M, YUAN C, et al., 2021. Late paleozoic tectonic transition from subduction to collision in the Chinese Altai and tianshan (central Asia): New geochronological constraints[J]. American Journal of Science, 321(1-2): 178-205, doi: 10.2475/01.2021.05.
    LI W, LIU Y Q, DONG Y P, et al., 2013. The geochemical characteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in northeastern Xinjiang, China[J]. Science China Earth Sciences, 56(8): 1318-1333, doi: 10.1007/s11430-012-4483-3.
    LI Z H, TANG L J, DING W L, et al., 2002. Fault characteristic analysis for the hinterland of Junggar basin[J]. Petroleum Exploration and Development, 29(1): 40-43. (in Chinese with English abstract)
    LIANG P, CHEN H Y, HOLLINGS P, et al., 2016. Geochronology and geochemistry of igneous rocks from the Laoshankou district, North Xinjiang: Implications for the Late Paleozoic tectonic evolution and metallogenesis of East Junggar[J]. Lithos, 266-267: 115-132, doi: 10.1016/j.lithos.2016.08.021.
    LIU X J, XIAO W J, XU J F, et al., 2017. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China[J]. Gondwana Research, 48: 34-49, doi: 10.1016/j.gr.2017.03.010.
    LIU Y R, JIAN P, ZHANG W, et al., 2016. Zircon SHRIMP U-Pb dating and O isotope of the Beitashan ophiolitic mélange in the East Junggar, Xinjiang, and its geological significance[J]. Acta Petrologica Sinica, 32(2): 537-554. (in Chinese with English abstract)
    LONG X P, YUAN C, SUN M, et al., 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt[J]. Gondwana Research, 21(2-3): 637-653, doi: 10.1016/j.gr.2011.05.015.
    LU Y M, ZHAO J, CHEN X, et al., 2007. The realationship between ductile-brittle shear zones and mineralization of gold deposits in Shuangquan area, Eastern Junggar[J]. Xinjiang Geology, 25(2): 164-168. (in Chinese with English abstract)
    LUO J, XIAO W J, WAKABAYASHI J, et al., 2017. The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids[J]. Gondwana Research, 43: 17-40, doi: 10.1016/j.gr.2015.04.004.
    MARRETT R, ALLMENDINGER R W, 1990. Kinematic analysis of fault-slip data[J]. Journal of Structural Geology, 12(8): 973-986. doi: 10.1016/0191-8141(90)90093-E
    MEANS W D, 1976. Stress and strain. Basic concepts of continuum mechanics for geologists[M]. New York: Springer: 1-399.
    MORIN J, JOLIVET M, ROBIN C, et al., 2018. Jurassic paleogeography of the Tian Shan: An evolution driven by far-field tectonics and climate[J]. Earth-Science Reviews, 187: 286-313. doi: 10.1016/j.earscirev.2018.10.007
    SENGÖR A M C, NATAL'IN B A, 1996. Paleotectonics of Asia: Fragments of a synthesis[M]//YIN A, HARRISON T M. The tectonic evolution of Asia. Cambridge: Cambridge University Press: 486-640.
    SHU L S, CHARVET J, MA R S, 1998. Study of a large scale Paleozoic dextral strike-slip ductile shear zone along the northern margin of the central Tianshan, Xinjiang[J]. Xinjiang Geology, 16(4): 326-336. (in Chinese with English abstract)
    SHU L S, CHARVET J, GUO L Z, et al., 1999. A large-scale Palaeozoic dextral ductile strike-slip zone: The Aqqikkudug-Weiya Zone along the Northern Margin of the Central Tianshan Belt, Xinjiang, NW China[J]. Acta Geologica Sinica, 73(2): 148-162, doi: 10.1111/j.1755-6724.1999.tb00822.x.
    SHU L S, LU H F, YIN D H, et al., 2001. Late Paleozoic continental accretionary tectonics in northern Xinjiang[J]. Xinjiang Geology, 19(1): 59-63. (in Chinese with English abstract)
    SHU L S, WANG Y J, 2003. Late Devonian-Early Carboniferous radiolarian fossils from siliceous rocks of the Kelameili ophiolite, Xinjiang[J]. Geological Review, 49(4): 408-412. (in Chinese with English abstract)
    SU Y P, ZHENG J P, GRIFFIN W L, et al., 2012. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition[J]. Gondwana Research, 22(3-4): 1009-1029, doi: 10.1016/j.gr.2012.01.004.
    TANG W H, ZHANG Z C, LI J F, et al., 2014. Late Paleozoic to Jurassic tectonic evolution of the Bogda area (northwest China): Evidence from detrital zircon U-Pb geochronology[J]. Tectonophysics, 626: 144-156. doi: 10.1016/j.tecto.2014.04.005
    TAO M X, 1992. Characteristics of the Mesozoic and Cenozoic tectonic stress fields of the Vrümqi-Usu region, Xinjiang[J]. Acta Geological Sinica, 66(3): 206-218. (in Chinese with English abstract)
    TAO W, GUO L, ZHOU N C, et al., 2022. Zircon U-Pb ages, geochemical characterisitics of the Basike granodiorite in East Junggar and their tectonic significance[J]. Geological Review, 68(2): 488-506. (in Chinese with English abstract)
    VAN DER VOO R, VAN HINSBERGEN D J J, DOMEIER M, et al., 2015. Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis[M]//ANDERSON T H, DIDENKO A N, JOHNSON C L, et al. Late Jurassic Margin of laurasia-a record of faulting accommodating plate rotation. Boulder: Geological Society of America: 589-606.
    VASSALLO R, JOLIVET M, RITZ J F, et al., 2007. Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis[J]. Earth and Planetary Science Letters, 259(3-4): 333-346, doi: 10.1016/j.epsl.2007.04.047.
    VINCENT S J, ALLEN M B, 2001. Sedimentary record of Mesozoic intracontinental deformation in the eastern Junggar Basin, northwest China: Response to orogeny at the Asian margin[M]//HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Memoir of Geological Society of America: 341-360.
    WANG J L, WU C D, LI Z, et al., 2018a. The tectonic evolution of the Bogda region from Late Carboniferous to Triassic time: Evidence from detrital zircon U-Pb geochronology and sandstone petrography[J]. Geological Magazine, 155(5): 1063-1088, doi: 10.1017/S0016756816001217.
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China Derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774.
    WANG Y J, JIA D, PAN J G, et al., 2018b. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China—implications for deep-seated petroleum exploration[J]. AAPG Bulletin, 102(8): 1489-1521. doi: 10.1306/10181716518
    WINDLEY B F, ALEXEIEVD, XIAO W J, et al., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31-47, doi: 10.1144/0016-76492006-022.
    WU Q, QU X, CHANG G H, et al., 2012. Geochronology of the Hongliuxia ductile shear zone and its constraint on the closure time of the Junggar Ocean[J]. Acta Petrologica Sinica, 28(8): 2331-2339. (in Chinese with English abstract)
    XIAO F F, HOU G T, WANG Y X, et al., 2010. Study on structural stress fields since Permian, Junggar basin and adjacent areas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(2): 224-230. (in Chinese with English abstract)
    XIAO W J, HAN C M, YUAN C, et al., 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 32(2-4): 102-117, doi: 10.1016/j.jseaes.2007.10.008.
    XIAO W J, WINDLEY B F, YUAN C, et al., 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 309(3): 221-270, doi: 10.2475/03.2009.02.
    XIAO W J, WINDLEY B F, SUN S, et al., 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477-507, doi: 10.1146/annurev-earth-060614-105254.
    XIAO W J, WINDLEY B F, HAN C M, et al., 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020
    XIAO W J, SONG D F, WINDLEYB F, et al., 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences, 63(3): 329-361. doi: 10.1007/s11430-019-9524-6
    XIAO X C, TANG Y Q, 1991. Tectonic evolution of the southern margin of the Paleo-Asian composite megasuture[M]. Beijing: Science Press. (in Chinese)
    XIAO X C, TANG Y Q, FENG Y M, et al., 1992. Tectonic evolution of northern Xinjiang and its adjacent regions[M]. Beijing: Geological Publishing House. (in Chinese)
    XU Q Q, ZHAO L, NIU B G, et al., 2020. Early Paleozoic arc magmatism in the Kalamaili orogenic belt, Northern Xinjiang, NW China: Implications for the tectonic evolution of the East Junggar terrane[J]. Journal of Asian Earth Sciences, 194: 104072. doi: 10.1016/j.jseaes.2019.104072
    XU X W, JIANG N, LI X H, et al., 2015. Spatial-temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar[J]. Journal of Asian Earth Sciences, 111: 470-491, doi: 10.1016/j.jseaes.2015.06.017.
    YANG G X, LI Y J, SI G H, et al., 2010. LA-ICPMS U-Pb Zircon Dating of the Beilekuduke Granite in Kalamaili Area, East Junggar, Xinjiang, China and its geological implication[J]. Geotectonica et Metallogenia, 34(1): 133-138. (in Chinese with English abstract)
    YANG G X, LI Y J, WU H E, et al., 2011. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 40(3): 722-736, doi: 10.1016/j.jseaes.2010.11.008.
    YU S, CHEN W, EVANS N J, et al., 2014. Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J]. Tectonophysics, 630: 166-182. doi: 10.1016/j.tecto.2014.05.021
    ZENG L J, NIU H C, BAO Z W, et al., 2015. Petrogenesis and tectonic significance of the plagiogranites in the Zhaheba ophiolite, Eastern Junggar orogen, Xinjiang, China[J]. Journal of Asian Earth Sciences, 113: 137-150, doi: 10.1016/j.jseaes.2014.09.031.
    ZHANG J, QU J F, ZHANG B H, et al., 2018. Paleozoic to Mesozoic deformation of eastern Cathaysia: A case study of theChencai Complex, Zhejiang Province, eastern China, and its tectonic implications[J]. GSA Bulletin, 130(1-2): 114-138. doi: 10.1130/B31680.1
    ZHANG J, QU J F, ZHANG B H, et al., 2020. Mesozoic intraplate deformation of the central North China Craton: Mechanism and tectonic settings[J]. Journal of Asian Earth Sciences, 192: 104269. doi: 10.1016/j.jseaes.2020.104269
    ZHANG J, WANG Y N, QU J F, et al., 2021. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review[J]. International Geology Review, 63(12): 1490-1520, doi: 10.1080/00206814.2020.1783583.
    ZHANG J, QU J F, ZHANG B H, et al., 2022. Determination of an intracontinental transform system along the southern Central Asian Orogenic Belt in the latest Paleozoic[J]. American Journal of Science, 322(7): 851-897, doi: 10.2475/07.2022.01.
    ZHANG Y, LIANG G L, QU X, et al., 2010. Evidence of U-Pb age and Hf isotope of zircons for Early Paleozoic magmatism in the Qiongheba arc, East Junggar[J]. Acta Petrologica Sinica, 26(8): 2389-2398. (in Chinese with English abstract)
    ZHANG Y Y, GUO Z J, PE-PIPER G, et al., 2015. Geochemistry and petrogenesis of Early Carboniferous volcanic rocks in East Junggar, North Xinjiang: Implications for post-collisional magmatism and geodynamic process[J]. Gondwana Research, 28(4): 1466-1481, doi: 10.1016/j.gr.2014.08.018.
    ZHANG Z C, ZHOU G, KUSKY T M, et al., 2009. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution[J]. Gondwana Research, 16(2): 201-215, doi: 10.1016/j.gr.2009.03.004.
    ZHAO L, JI J Q, XU Q Q, et al., 2012. Karamalli strike-slipping fault and deformational sequence since Late Plaeozoic in the northern Xinjiang[J]. Acta Petrologica Sinica, 28(7): 2257-2268. (in Chinese with English abstract)
    ZHAO L, NIU B G, XU Q Q, et al., 2019. An analysis of Silurian-Carboniferous sedimentary and structural characteristics on both sides of Karamaili ophiolitic belt of Xinjiang and its significance[J]. Geology in China, 46(3): 615-628. (in Chinese with English abstract)
    ZHENG M L, TIAN A J, YANG T Y, et al., 2018. Structural evolution and hydrocarbon accumulation in the eastern Junggar Basin[J]. Oil & Gas Geology, 39(5): 907-917. (in Chinese with English abstract)
    蔡志慧, 许志琴, 何碧竹, 等, 2012. 东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程[J]. 岩石学报, 28(6): 1875-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206014.htm
    陈文, 孙枢, 张彦, 等, 2005. 新疆东天山秋格明塔什-黄山韧性剪切带40Ar/39Ar年代学研究[J]. 地质学报, 79(6): 790-804.
    方爱民, 王世刚, 张俊敏, 等, 2015. 新疆北部卡拉麦里蛇绿岩中辉长岩的锆石U-Pb年龄及其构造意义[J]. 地质科学, 50(1): 140-154.
    方维萱, 2022. 论沉积盆地构造岩相变形史研究方法及应用[J]. 地质力学学报, 28 (1): 1-21. doi: 10.12090/j.issn.1006-6616.20222801
    甘林, 唐红峰, 韩宇捷, 2010. 新疆东准噶尔野马泉花岗岩体的年龄和地球化学特征[J]. 岩石学报, 26(8): 2374-2388.
    郭丽爽, 张锐, 刘玉琳, 等, 2009. 新疆东准噶尔铜华岭中酸性侵入体锆石U-Pb年代学研究[J]. 北京大学学报(自然科学版), 45(5): 819-824. doi: 10.13209/j.0479-8023.2009.122
    韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
    韩宇捷, 唐红峰, 甘林, 2012. 新疆东准噶尔老鸦泉岩体的锆石U-Pb年龄和地球化学组成[J]. 矿物学报, 32(2): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201202004.htm
    何登发, 翟光明, 况军, 等, 2005. 准噶尔盆地古隆起的分布与基本特征[J]. 地质科学, 40(2): 248-261.
    何登发, 周路, 吴晓智, 2012. 准噶尔盆地古隆起形成演化与油气聚集[M]. 北京: 石油工业出版社.
    何国琦, 李茂松, 刘德权, 等, 1994. 中国新疆古生代地壳演化及成矿[M]. 乌鲁木齐: 新疆人民出版社.
    何国琦, 陆书宁, 李茂松, 1995. 大型断裂系统在古板块研究中的意义: 以中亚地区为例[J]. 高校地质学报, 1(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX501.000.htm
    何国琦, 李茂松, 2001. 中国新疆北部奥陶: 志留系岩石组合的古构造、古地理意义[J]. 北京大学学报(自然科学版), 37(1): 99-110.
    何国琦, 李茂松, 贾进斗, 等, 2001. 论新疆东准噶尔蛇绿岩的时代及其意义[J]. 北京大学学报(自然科学版), 37(6): 852-858.
    贺昕宇, 方同辉, 薄贺天, 等, 2022. 东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义: 年代学和地球化学约束[J]. 地质力学学报, 28 (1): 126-142. doi: 10.12090/j.issn.1006-6616.20222807
    黄岗, 牛广智, 王新录, 等, 2012. 新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限: 来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质通报, 31(8): 1267-1278.
    黄岗, 牛广智, 王新录, 等, 2016a. 新疆东准噶尔早志留世埃达克岩: 来自锆石U-Pb年龄、地球化学及Sr-Nd-Hf同位素的证据[J]. 岩石矿物学杂志, 35(5): 751-767.
    黄岗, 牛广智, 王新录, 等, 2016b. 新疆东准噶尔早志留世弧岩浆岩: 来自姜格尔库都克石英二长闪长岩岩石地球化学、锆石U-Pb年龄和Hf同位素证据[J]. 现代地质, 30(6): 1219-1233.
    李锦轶, 朱宝清, 冯益民, 1989. 南明水组和蛇绿岩之间不整合关系的确认及其意义[J]. 中国区域地质(3): 250-255.
    李锦轶, 肖序常, 汤耀庆, 等, 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 36(4): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199004002.htm
    李锦轶, 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 11(S1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.005.htm
    李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
    李振宏, 汤良杰, 丁文龙, 等, 2002. 准噶尔盆地腹部地区断裂特征分析[J]. 石油勘探与开发, 29(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200201009.htm
    刘亚然, 简平, 张维, 等, 2016. 新疆东准噶尔北塔山蛇绿混杂岩锆石SHRIMP U-Pb定年、氧同位素及其地质构造意义[J]. 岩石学报, 32(2): 537-554.
    路彦明, 赵军, 陈祥, 等, 2007. 东准噶尔双泉地区韧-脆性剪切带与金矿成矿[J]. 新疆地质, 25(2): 164-168.
    舒良树, 夏飞雅克, 马瑞士, 1998. 中天山北缘大型右旋走滑韧剪带研究[J]. 新疆地质, 16(4): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199804004.htm
    舒良树, 卢华复, 印栋浩, 等, 2001. 新疆北部古生代大陆增生构造[J]. 新疆地质, 19(1): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200101015.htm
    舒良树, 王玉净, 2003. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J]. 地质论评, 49(4): 408-412.
    陶明信, 1992. 新疆乌鲁木齐-乌苏地区中、新生代构造应力场特征[J]. 地质学报, 66(3): 206-218.
    陶威, 郭岭, 周宁超, 等, 2022. 东准噶尔巴斯克花岗岩闪长岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质论评, 68(2): 488-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202202007.htm
    吴琪, 屈迅, 常国虎, 等, 2012. 红柳峡韧性剪切带形成时代及其对准噶尔洋盆闭合时限的约束[J]. 岩石学报, 28(8): 2331-2339. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208004.htm
    肖芳锋, 侯贵廷, 王延欣, 等, 2010. 准噶尔盆地及周缘二叠纪以来构造应力场解析[J]. 北京大学学报(自然科学版), 46(2): 224-230.
    肖文交, 宋东方, WINDLEYB F, 等, 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm
    肖序常, 汤耀庆, 1991. 古中亚复合巨型缝合带南缘构造演化[M]. 北京: 科学出版社.
    肖序常, 汤耀庆, 冯益民, 等, 1992. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社.
    新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社.
    杨高学, 李永军, 司国辉, 等, 2010. 东准卡拉麦里地区贝勒库都克岩体锆石LA-ICPMS U-Pb测年及地质意义[J]. 大地构造与成矿学, 34(1): 133-138.
    张永, 梁广林, 屈迅, 等, 2010. 东准噶尔琼河坝岛弧早古生代岩浆活动的锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 26(8): 2389-2398.
    赵磊, 季建清, 徐芹芹, 等, 2012. 新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次[J]. 岩石学报, 28(7): 2257-2268. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207026.htm
    赵磊, 牛宝贵, 徐芹芹, 等, 2019. 新疆东准噶尔卡拉麦里蛇绿岩带两侧志留系—石炭系沉积和构造特征分析及其意义[J]. 中国地质, 46(3): 615-628. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903013.htm
    郑孟林, 田爱军, 杨彤远, 等, 2018. 准噶尔盆地东部地区构造演化与油气聚集[J]. 石油与天然气地质, 39(5): 907-917.
  • 加载中



    Article Metrics

    Article views (897) PDF downloads(132) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint