Citation: | ZHU Siyu, CAO Jiawen, FENG Chengjun, et al., 2023. Study on fault-slip potential induced by water injection in the deep thermal reservoir of the Gaoyang low uplift, Hebei Province. Journal of Geomechanics, 29 (2): 220-235. DOI: 10.12090/j.issn.1006-6616.2022093 |
Recently, water injection-induced earthquakes caused by faulting instability have become a prominent geological safety issue for safely exploiting deep geothermal resources. This study investigates whether the future large-scale development of deep geothermal resources in the Gaoyang uplift will destabilize buried faults. There has a great amount of karst thermal reservoir in the Gaoyang low uplift, Hebei province. To find out whether the large-scale deep geothermal exploitation in the future will induce faults distributed in and around Gaoyang geothermal reservoir to become unstable, firstly, we calculate the initial stable state of the main buried faults based on Mohr-Coulomb criteria using the comprehensive in-situ stress field of North China; then, under Hsieh and Bredehoeft hydrological model, we calculate the possible excess pore pressure caused by water injection for 10~40 years at representative geothermal wells; subsequently, combing this perturbation with the initial stable state, we obtain the fault slip potential of the main buried faults from 2022 to 2062 based on a probabilistic approach; ultimately, we discuss the impact on the changes of fault slip potential due to varying angles between the maximum horizontal principal stress and the fault orientation. The main conclusions of this work can be drawn as follows. With the injection rate of 170 m3/h, the maximum excess pore pressure caused by a single geothermal well does not surpass 11 MPa, and it obeys a power decrease distribution with increasing distance from the center of the injection well; its influence scope is no more than 8 km. Continuous water injection strongly changes the stability of those buried faults distributed 2 km within the geothermal wells, and fault-slip potentials of some segmental faults even exceed 85%, corresponding to high unstable risk. Under 50 years of water injection at an injection well, the fault-slip potential of faults with different strikes within 2 km from the injection well increases rapidly with the declining angle among its orientation and the regional maximum horizontal principal stress. This paper's study methodology and associated findings can offer geoscientific justification for the safe exploration and exploitation of deep geothermal resources domestically and internationally. This study can provide a method reference for the location of injection wells and the selection of faults in different orientations in geothermal fields at home and abroad, thus promoting the safe and efficient development and utilization of geothermal resources.
CHANG J, QIU N S, ZHAO X Z, et al., 2016. Present-day geothermal regime of the Jizhong depression in Bohai Bay basin, East China[J]. Chinese Journal of Geophysics, 59(3): 1003-1016. (in Chinese with English abstract)
|
CHEN M X, HUANG G S, ZHANG W R, et al., 1982. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei Province[J]. Scientia Geologica Sinica (3): 239-252. (in Chinese with English abstract)
|
CHEN X W, NAKATA N, PENNINGTON C, et al., 2017. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks[J]. Scientific Reports, 7(1): 4945. doi: 10.1038/s41598-017-04992-z
|
ELLSWORTH W L, 2013. Injection-induced earthquakes[J]. Science, 341(6142): 1225942. doi: 10.1126/science.1225942
|
EVANS K F, ZAPPONE A, KRAFT T, et al., 2012. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe[J]. Geothermics, 41, 30-54. doi: 10.1016/j.geothermics.2011.08.002
|
FAN Y L, TAN C X, ZHANG P, et al., 2020. A study of current in-situ stress state and its influence on tectonic stability in the Xiongan New Area[J]. Acta Geoscientica Sinica, 41(4): 481-491. (in Chinese with English abstract)
|
FENG C J, QI B S, WANG X S, et al., 2019. Study of fault activity risk in typical strong seismic regions in northern China by in-situ stress measurements and the influence on the Xiong'an New Area[J]. Earth Science Frontiers, 26(4): 170-190. (in Chinese with English abstract)
|
GAN H N, WANG G L, LIN W J, et al., 2020. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures[J]. Journal of Geomechanics, 26(2): 211-220. (in Chinese with English abstract)
|
GIARDINI D, 2009. Geothermal quake risks must be faced[J]. Nature, 462(7275): 848-849. doi: 10.1038/462848a
|
GUGLIELMI Y, CAPPA F, AVOUAC J P, et al., 2015. Seismicity triggered by fluid injection-induced aseismic slip[J]. Science, 348(6240): 1224-1226. doi: 10.1126/science.aab0476
|
HE D F, CUI Y Q, ZHANG Y Y, et al., 2017. Structural genetic types of paleo-buried hill in Jizhong depression, Bohai Bay Basin[J]. Acta Petrologica Sinica, 33(4): 1338-1356. (in Chinese with English abstract)
|
HE D F, SHAN S Q, ZHANG Y Y, et al., 2018. 3-D geologic architecture of Xiong'an New Area: constraints from seismic reflection data[J]. Science China Earth Sciences, 61(8): 1007-1022. doi: 10.1007/s11430-017-9188-4
|
HEALY J H, RUBEY W W, GRIGGS D T, et al., 1968. The Denver earthquakes[J]. Science, 161(3848): 1301-1310. doi: 10.1126/science.161.3848.1301
|
HSIEH P A, BREDEHOEFT J D, 1981. A reservoir analysis of the Denver earthquakes: a case of induced seismicity[J]. Journal of Geophysical Research, 86(B2): 903-920. doi: 10.1029/JB086iB02p00903
|
HUANG J P, NI S D, FU R S, et al., 2009. Source mechanism of the 2006 Mw5.1 Wen'an earthquake determined from a joint inversion of local and teleseismic broadband waveform data[J]. Chinese Journal of Geophysics, 52(1): 120-130. (in Chinese with English abstract) doi: 10.1002/cjg2.1333
|
HUANG L Y, YANG S X, CUI X F, et al., 2013. Analysis of characteristics of measured stress and stability of faults in North China[J]. Rock and Soil Mechanics, 34(S1): 204-213. (in Chinese with English abstract)
|
KERANEN K M, SAVAGE H M, ABERS G A, et al., 2013. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw5.7 Earthquake Sequence[J]. Geology, 41(6): 699-702. doi: 10.1130/G34045.1
|
LEI X L, LI X Y, LI Q, et al., 2014. Role of immature faults in injection-induced seismicity in oil/gas reservoirs: a case study of the Sichuan Basin, China[J]. Seismology and Geology, 36(3): 625-643. (in Chinese with English abstract)
|
LEI X L, HUANG D J, SU J R, et al., 2017. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China[J]. Scientific Reports, 7(1): 699-702. doi: 10.1038/s41598-017-00792-7
|
LI Y Y, ZHANG B J, XING Y F, et al., 2021. Fragmentation law of carbonate rocks under different confining pressure in Gaoyuzhuang Formation, Gaoyang geothermal field, Xiong'an New Area[J/OL]. Geology in China, 2021: 1-15[2022-07-11].
|
LIU J R, 2003. The status of geothermal reinjection[J]. Hydrogeology and Engineering Geology, 30(3): 100-104. (in Chinese with English abstract)
|
LOHMAN R B, MCGUIRE J J, 2007. Earthquake swarms driven by aseismic creep in the Salton Trough, California[J]. Journal of Geophysical Research, 112(B4): B04405.
|
MCGARR A, 2014. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 119: 1008-1019. doi: 10.1002/2013JB010597
|
MAO X, WANG X W, GUO S Y, et al., 2021. Genetic mechanism of geothermal resources in the Gaoyang geothermal field and adjacent areas[J]. Carsologica Sinica, 40(2): 273-280. (in Chinese with English abstract)
|
NIU L L, FENG C J, ZHANG P, et al., 2018. In-situ measurements in the southern margin of the Ordos block[J]. Journal of Geomechanics, 24(1): 25-34. (in Chinese with English abstract)
|
PANG Z H, KONG Y L, PANG J M, et al., 2017. Geothermal resources and development in Xiongan New Area[J]. Bulletin of Chinese Academy of Sciences, 32(11): 1224-1230. (in Chinese with English abstract)
|
RALEIGH C B, HEALY J H, BREDEHOEFT J D, 1976. An experiment in earthquake control at Rangely, Colorado[J]. Science, 191(4233): 1230-1237. doi: 10.1126/science.191.4233.1230
|
RUBEY W W, HUBBERT M K, 1959. Role of fluid pressure in mechanics of overthrust faulting: Ⅱ. Overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis[J]. GSA Bulletin, 70(2): 167-206. doi: 10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2
|
RUTQVIST J, OLDENBURG C M, 2008. Analysis of injection-induced micro-earthquakes in a geothermal steam reservoir, the Geysers Geothermal Field, California[C]//Proceedings of the 42nd U.S. Rock Mechanics Symposium (USRMS). San Francisco, California: Lawrence Berkeley National Lab: 151.
|
SEGALL P, LU S, 2015. Injection-induced seismicity: poroelastic and earthquake nucleation effects[J]. Journal of Geophysical Research, 120(7): 5082-5103. doi: 10.1002/2015JB012060
|
SHANG S J, FENG C J, TAN C X, et al., 2019. Quaternary activity study of major buried faults near Xiongan New Area[J]. Acta Geoscientica Sinica, 40(6): 836-846. (in Chinese with English abstract)
|
SHAPIRO S A, DINSKE C, 2009. Scaling of seismicity induced by nonlinear fluid-rock interaction[J]. Journal of Geophysical Research, 114(B9): B09307.
|
SUI S Q, WANG Y X, LI H Q, et al., 2020. Analysis of sedimentary characteristics of the Wumisan Formation in Jixian system, Xiong'an New Area[J]. Mineral Exploration, 11(8): 1563-1571. (in Chinese with English abstract)
|
TAN C X, YANG W M, ZHANG C S, et al., 2020. Study on the active tectonic zone and regional crustal stability in the coordinated development of the Beijing-Tianjin-Hebei Region[M]. Beijing: Geological Publishing House. (in Chinese)
|
TANG C, 2020. Subsidence study of geothermal recharge test in Gaoyang County[D]. Baoding: Hebei University. (in Chinese with English abstract)
|
WALSH F R, ZOBACK M D, 2016. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to North Central Oklahoma, USA[J]. Geology, 44(12): 991-994. doi: 10.1130/G38275.1
|
WANG G L, LI J, WU A M, et al., 2018. A study of the thermal storage characteristics of Gaoyuzhuang formation, a new layer system of thermal reservoir in Rongcheng uplift area, Hebei province[J]. Acta Geoscientica Sinica, 39(5): 533-541. (in Chinese with English abstract)
|
WANG G L, GAO J, ZHANG B J, et al., 2020. Study on the thermal storage characteristics of the Wumishan formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong'an New Area[J]. Acta Geologica Sinica, 94(7): 1970-1980. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.07.006
|
WANG R J, KVUMPEL H J, 2003. Poroelasticity: efficient modeling of strongly coupled, slow deformation processes in multilayered half-space[J]. Geophysics, 68(2): 705-717. doi: 10.1190/1.1567241
|
WANG S Q, ZHANG B J, LI Y Y, et al., 2021. Heat accumulation mechanism of deep ancient buried hill in the Northeast of Gaoyang geothermal field, Xiong'an New Area[J]. Bulletin of Geological Science and Technology, 40(3): 12-21. (in Chinese with English abstract)
|
WEINGARTEN M, GE S, GODT J W, et al., 2015. High-rate injection is associated with the increase in U.S. mid-continent seismicity[J]. Science, 348(6241): 1336-1340. doi: 10.1126/science.aab1345
|
WU A M, MA F, WANG G L, et al., 2018. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientica Sinica, 39(5): 523-532. (in Chinese with English abstract)
|
YANG Y T, XU T G, 2004. Hydrocarbon habitat of the offshore Bohai Basin, China[J]. Marine and Petroleum Geology, 21(6): 691-708. doi: 10.1016/j.marpetgeo.2004.03.008
|
YECK W L, WEINGARTEN M, BENZ H M, et al., 2016. Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure[J]. Geophysical Research Letters, 43(19): 10198-10207.
|
YECK W L, HAYES G P, MCNAMARA D E, et al., 2017. Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts[J]. Geophysical Research Letters, 44(2): 711-717. doi: 10.1002/2016GL071685
|
YEO I W, BROWN M R M, GE S, et al., 2020. Causal mechanism of injection-induced earthquakes through the Mw5.5 Pohang earthquake case study[J]. Nature Communications, 11(1): 2614. doi: 10.1038/s41467-020-16408-0
|
YOON J S, ZANG A, STEPHANSSON O, 2013. Hydro-mechanical coupled discrete element modeling of geothermal reservoir stimulation and induced seismicity[M]//HOU M Z, XIE H P, WERE P. Clean energy systems in the subsurface: production, storage and conversion. Berlin: Springer: 221-231.
|
YU C P, VAVRYǦUK V, ADAMOVÁ P, et al., 2018. Moment tensors of induced microearthquakes in the Geysers geothermal reservoir from broadband seismic recordings: implications for faulting regime, stress tensor, and fluid pressure[J]. Journal of Geophysical Research, 123(10): 8748-8766. doi: 10.1029/2018JB016251
|
YU Y X, XU Z H, 1994. A study on orientations of horizontal principal stress in Jizhong depression using borehole breakout data[J]. Petroleum Exploration and Development, 21(2): 48-55. (in Chinese with English abstract)
|
ZANG A, YOON J S, STEPHANSSON O, et al., 2013. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity[J]. Geophysical Journal International, 195(2): 1282-1287. doi: 10.1093/gji/ggt301
|
ZHAO Y C, LUO Y, LI L X, et al., 2022. In-situ stress simulation and integrity evaluation of underground gas storage: A case study of the Xiangguosi underground gas storage, Sichuan, SW China[J]. Journal of Geomechanics, 28(4): 523-536.
|
ZHU R X, CHEN L, WU F Y, et al., 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 789-797. doi: 10.1007/s11430-011-4203-4
|
ZHU S Y, FENG C J, TAN C X, et al., 2022. Fault slip potential induced by water injection in the Rongcheng deep-seated geothermal reservoir, Xiong'an New Area[J]. Chinese Journal of Rock Mechanics and Engineering, 41(S1): 2735-2756. (in Chinese with English abstract)
|
ZHU S Y, FENG C J, XING L X, et al., 2022. Changes in Fault Slip Potential Due to Water Injection in the Rongcheng Deep Geothermal Reservoir, Xiong'an New Area, North China[J]. Water, 14(3): 410. doi: 10.3390/w14030410
|
ZOBACK M D, GORELICK S M, 2012. Earthquake Triggering and Large-Scale Geologic Storage of Carbon Dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10164-10168. doi: 10.1073/pnas.1202473109
|
常健, 邱楠生, 赵贤正, 等, 2016. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 59(3): 1003-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603022.htm
|
陈墨香, 黄歌山, 张文仁, 等, 1982. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学 (3): 239-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198203000.htm
|
范玉璐, 谭成轩, 张鹏, 等, 2020. 雄安新区现今地应力环境及其对构造稳定性影响研究[J]. 地球学报, 41(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202004003.htm
|
丰成君, 戚帮申, 王晓山, 等, 2019. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响[J]. 地学前缘, 26(4): 170-190.
|
丰成君, 李滨, 李惠, 等, 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨. 地质力学学报, 28 (6): 919-937. doi: 10.12090/j.issn.1006-6616.20222820
|
甘浩男, 王贵玲, 蔺文静, 等, 2020. 增强型地热系统环境地质影响现状研究与对策建议[J]. 地质力学学报, 26(2): 211-220. doi: 10.12090/j.issn.1006-6616.2020.26.02.020
|
何登发, 崔永谦, 张煜颖, 等, 2017. 渤海湾盆地冀中坳陷古潜山的构造成因类型[J]. 岩石学报, 33(4): 1338-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704024.htm
|
何登发, 单帅强, 张煜颖, 等, 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 48(9): 1207-1222.
|
黄建平, 倪四道, 傅容珊, 等, 2009. 综合近震及远震波形反演2006文安地质(Mw5.1)的震源机制解[J]. 地球物理学报, 52(1): 120-130.
|
黄禄渊, 杨树新, 崔效锋, 等, 2013. 华北地区实测应力特征与断层稳定性分析[J]. 岩石力学, 34(S1): 204-213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1032.htm
|
雷兴林, 李霞颖, 李琦, 等, 2014. 沉积岩储藏系统小断层在油气田注水诱发地震中的作用: 以四川盆地为例[J]. 地震地质, 36(3): 625-643.
|
李燕燕, 张保建, 邢一飞, 等, 2021. 雄安新区高阳地热田热储高于庄组碳酸盐岩不同围压下破碎规律研究[J/OL]. 中国地质, 2021: 1-15[2022-07-11].
|
刘久荣, 2003. 地热回灌的发展现状[J]. 水文地质工程地质, 30(3): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200303025.htm
|
毛翔, 汪新伟, 郭世炎, 等, 2021. 高阳地热田及邻区地热资源形成机制[J]. 中国岩溶, 40(2): 273-280.
|
牛琳琳, 丰成君, 张鹏, 等, 2018. 鄂尔多斯地块南缘地应力测量研究[J]. 地质力学学报, 24(1): 25-34. doi: 10.12090/j.issn.1006-6616.2018.24.01.003
|
庞忠和, 孔彦龙, 庞菊梅, 等, 2017. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 32(11): 1224-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201711009.htm
|
商世杰, 丰成君, 谭成轩, 等, 2019. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 40(6): 836-846.
|
隋少强, 王延欣, 李海泉, 等, 2020. 河北雄安新区蓟县系雾迷山组沉积特征分析[J]. 矿产勘查, 11(8): 1563-1571. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202008001.htm
|
谭成轩, 杨为民, 张春山, 等, 2020. 京津冀协同发展区活动构造与区域地壳稳定性研究[M]. 北京: 地质出版社.
|
唐朝, 2020. 高阳县地热回灌试验的沉降研究[D]. 保定: 河北大学.
|
王贵玲, 李郡, 吴爱民, 等, 2018. 河北容城凸起区热储层新层系: 高于庄组热储特征研究[J]. 地球学报, 39(5): 533-541.
|
王贵玲, 高俊, 张保建, 等, 2020. 雄安新区高阳低凸起雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 94(7): 1970-1980.
|
王思琪, 张保建, 李燕燕, 等, 2021. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 40(3): 12-21.
|
吴爱民, 马峰, 王贵玲, 等, 2018. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 39(5): 523-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805002.htm
|
俞言祥, 许忠淮, 1994. 用钻孔崩落法研究冀中坳陷水平主应力方向[J]. 石油勘探与开发, 21(2): 48-55.
|
赵昱超, 罗瑜, 李隆新, 等, 2022. 地下储气库地应力模拟研究与地质完整性评估: 以相国寺为例[J]. 地质力学学报, 28(4): 523-536. doi: 10.12090/j.issn.1006-6616.2021138
|
朱日祥, 陈凌, 吴福元, 等, 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学: 地球科学, 41(5): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm
|
朱思雨, 丰成君, 谭成轩, 等, 2022. 雄安容城深热储层回灌注水诱发断层失稳危险性研究[J]. 岩石力学与工程学报, 41(S1): 2735-2756.
|