Citation: | MENG Wen, TIAN Tao, SUN Dongsheng, et al., 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model. Journal of Geomechanics, 28 (4): 537-549. DOI: 10.12090/j.issn.1006-6616.2022041 |
ANDERSON E M, 1951. The dynamics of faulting and Dike formation with application to Britain[M]. 2nd ed. Edinburgh, U.K. : Oliver and Boyd.
|
ANGELIER J, 1979. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics, 56(3-4): T17-T26. doi: 10.1016/0040-1951(79)90081-7
|
BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
|
CHANG L J, DING Z F, WANG C Y, 2021. Upper mantle anisotropy and implications beneath the central and western North China and the NE margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 64(1): 114-130. (in Chinese with English abstract)
|
CHANG Y, XU C H, REINERS P W, et al., 2010. The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous: Evidence from apatite (U-Th)/He dating[J]. Chinese Journal of Geophysics, 53(4): 912-919. (in Chinese with English abstract)
|
CHEN M, JIN Y, LU Y H, 2017. Shale gas development: Opportunities and challenges for rock mechanics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 47(11): 114601. (in Chinese with English abstract)
|
CHEN N, WANG C H, CHEN P Z, et al., 2021. Re-analyzing the in-situ stress field in the right bank of the Baihetan hydroelectric power plant using the borehole breakout data[J]. Journal of Geomechanics, 27(3): 430-440, doi: 10.12090/j.issn.1006-6616.2021.27.03.039.
|
CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)
|
DENG M S, 1997. Deformational analysis of the fold structure of sedimentary cover in Micangshan area[J]. Journal of Mineralogy and Petrology, 17(S1): 132-142. (in Chinese with English abstract)
|
DONG Y P, ZHA X F, FU M Q, et al., 2008. Characteristics of the Dabashan fold-thrust nappe structure at the southern margin of the Qinling, China[J]. Geological Bulletin of China, 27(9): 1493-1508. (in Chinese with English abstract)
|
FENG C J, CHEN Q C, WU M L, et al., 2012. Analysis of hydraulic fracturing stress measurement data: discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract)
|
HAIMSON B C, 1978. The hydrofracturing stress measuring method and recent field results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(4): 167-178.
|
HAIMSON B C, CORNET F H, 2003. ISRM Suggested Methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
|
HEIDBACH O, RAJABI M, REITER K, et al., 2016. World stress map database release 2016[DB/OL]. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001.
|
HOSSAIN M M, RAHMAN M K, RAHMAN S S, 2000. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering, 27(3-4): 129-149. doi: 10.1016/S0920-4105(00)00056-5
|
HU X P, ZANG A, HEIDBACH O, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005
|
HUANG J S, GRIFFITHS D V, WONG S W, 2012. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 49: 59-67. doi: 10.1016/j.ijrmms.2011.11.014
|
ITO T, EVANS K, KAWAI K, et al., 1999. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 36(6): 811-826. doi: 10.1016/S0148-9062(99)00053-4
|
JAEGER J C, COOK N G W, 1969. Fundamentals of rock mechanics[M]. London: Methuen & Co. : 513.
|
LI H B, WANG Z, XU F, et al., 2019. Shale gas reservoirs characteristics of Micang Mountain uplift in the north of the Sichuan Basin[J]. Unconventional Oil & Gas, 6(6): 1-6. (in Chinese with English abstract)
|
LI Y F, FU Y Q, TANG G, 2012. Laws of the effects of earth stress patterns on wellbore stability in a directional well[J]. Natural Gas Industry, 32(3): 78-80, 130-131. (in Chinese with English abstract)
|
LIU H, MENG S W, SU J, et al., 2019. Reflections and suggestions on the development and engineering management of shale gas fracturing technology in China[J]. Natural Gas Industry, 39(4): 1-7. (in Chinese with English abstract)
|
LIU Y W, GAO D P, LI Q, et al., 2019. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics, 49(1): 201901. (in Chinese with English abstract)
|
MA X D, ZOBACK M D, 2017. Lithology-controlled stress variations and pad-scale faults: A case study of hydraulic fracturing in the Woodford Shale, Oklahoma[J]. Geophysics, 82(6): ID35-ID44. doi: 10.1190/geo2017-0044.1
|
MENG W, CHEN Q C, ZHAO Z, et al., 2015. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 656: 1-19. doi: 10.1016/j.tecto.2015.04.010
|
PÖPPELREITER M, CARMEN G C, KRAAIJVELD M, 2010. Borehole image log technology: application across the exploration and production life cycle[M]//PÖPPELREITER M, GARCÍA-CARBALLIDO C, KRAAIJVELD M. Dipmeter and borehole image log technology. Denver, CO, USA: American Association of Petroleum Geologists: 81-112.
|
QIN X H, CHEN Q C, ZHAO X G, et al., 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements[J]. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189-1202. (in Chinese with English abstract)
|
ROSS D J K, BUSTIN R M, 2008. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin: Application of an integrated formation evaluation[J]. AAPG Bulletin, 92(1): 87-125. doi: 10.1306/09040707048
|
SCHULTZ R, ATKINSON G, EATON D W, et al., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play[J]. Science, 359(6373): 304-308. doi: 10.1126/science.aao0159
|
SONE H, 2012. Mechanical properties of shale gas reservoir rocks, and its relation to the in-situ stress variation observed in shale gas reservoirs[D]. Stanford: Stanford University: 97-189.
|
SONE H, ZOBACK M D, 2014a. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress[J]. International Journal of Rock Mechanics and Mining Sciences, 69: 120-132. doi: 10.1016/j.ijrmms.2014.04.002
|
SONE H, ZOBACK M D, 2014b. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 124: 416-431. doi: 10.1016/j.petrol.2014.09.022
|
SUN D S, CHEN Q C, LI A W, 2018-10-19. A waterway switch and packer control device: CN, 106761556B[P]. (in Chinese)
|
SUN D S, PANG F, LI A W, et al., 2020. In-situ stress profile prediction based on the rheological model: A case study of Well AY-1 in the Qianbei area of Guizhou province[J]. Natural Gas Industry, 40(3): 58-64. (in Chinese with English abstract)
|
TIAN T, FU D L, ZHOU S X, et al., 2020. The paleo-redox conditions of the shale in Niutitang Formation and its effects on organic matter enrichment of the Micangshan-Hannan Uplift[J]. Journal of Lanzhou University: Natural Sciences, 56(1): 37-47, 55. (in Chinese with English abstract)
|
WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.
|
WANG Z Q, YAN Q R, YAN Z, et al., 2009. New division of the main tectonic units of the Qinling Orogenic belt, Central China[J]. Acta Geologica Sinica, 83(11): 1527-1546. (in Chinese with English abstract)
|
WEI Z G, CHU R S, YANG X L, et al., 2019. Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas[J]. Acta Seismologica Sinica, 41(4): 445-458. (in Chinese with English abstract)
|
XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract)
|
XIE F R, CUI X F, 2015. Stress map of the recent tectonic stress field in China and adjacent areas[Z]. Beijing: Sino Maps Press. (in Chinese)
|
XIE H P, GAO F, JU Y, et al., 2016. Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs[J]. Chinese Science Bulletin, 61(1): 34-46. (in Chinese with English abstract) doi: 10.1360/zk2016-61-1-34
|
XU C C, 2012. Research progress in shale gas geological theory in China[J]. Special Oil & Gas Reservoirs, 19(1): 9-16. (in Chinese with English abstract)
|
XUE H, GAO H X, 2013. Introduction to the current situation and future of shale gas in China[J]. Shanghai Energy Conservation(9): 9-13. (in Chinese)
|
YANG S X, YAO R, CUI X F, et al., 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt[J]. Chinese Journal of Geophysics, 55(12): 4207-4217. (in Chinese with English abstract)
|
ZANG A, STEPHANSSON O, 2010. Stress field of the Earth' s crust[M]. Dordrecht: Springer.
|
ZHAI G Y, WANG Y F, LIU G H, et al., 2020. Accumulation model of the Sinian-Cambrian shale gas in western Hubei Province, China[J]. Journal of Geomechanics, 26(5): 696-713.
|
ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract)
|
ZHANG P, SUN Z G, WANG Q N, et al., 2017. In-situ stress measurement and stability analysis of surrounding rocks in the north section of deep buried tunnel in Muzhailing[J]. Journal of Geomechanics, 23(6): 893-903. (in Chinese with English abstract)
|
ZHANG W J, QIN X Q, GAO T J, et al., 2016. Characteristics and Evolution of Middle Cenozoic Tectonics, Micangshan Uplift Belt[J]. Natural gas technology and economy, 10(2): 22-25, 33. (in Chinese with English abstract)
|
ZHANG X, 2010. The dynamic mechanism and geological significance of mafic intrusion in the Ziyang-Zhenba Area, South Qinling[D]. Xi' an: Chang' an University.
|
ZHANG X Q, ZHAO D C, LI Z Z X, et al., 2021. The implications of three stages of Tonian magmatism in the northwestern margin of the Yangtze Block on the breakup of the Rodinia supercontinent[J]. Journal of Northwest University (Natural Science Edition), 51(6): 1042-1056. (in Chinese with English abstract)
|
ZHOU Z, JIN Y, ZENG Y J, et al., 2020. Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing[J]. Renewable Energy, 153: 301-313. doi: 10.1016/j.renene.2020.01.128
|
ZOBACK M D, TOWNEND J, 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 336(1-4): 19-30. doi: 10.1016/S0040-1951(01)00091-9
|
ZOBACK M D, 2007. Reservoir geomechanics[M]. New York: Cambridge University Press: 1-505.
|
常利军, 丁志峰, 王椿镛, 2021. 华北中西部和青藏高原东北缘上地幔各向异性变形特征[J]. 地球物理学报, 64(1): 114-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202101008.htm
|
常远, 许长海, REINERS P W, 等, 2010. 米仓山-汉南隆起白垩纪以来的剥露作用: 磷灰石(U-Th)/He年龄记录[J]. 地球物理学报, 53(4): 912-919. doi: 10.3969/j.issn.0001-5733.2010.04.016
|
陈勉, 金衍, 卢运虎, 2017. 页岩气开发: 岩石力学的机遇与挑战[J]. 中国科学: 物理学 力学 天文学, 47(11): 114601. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711002.htm
|
陈念, 王成虎, 陈平志, 等, 2021. 利用钻孔崩落数据再认识白鹤滩右岸地应力场特征[J]. 地质力学学报, 27(3): 430-440, doi: 10.12090/j.issn.1006-6616.2021.27.03.039.
|
陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
|
邓明森, 1997. 米仓山区盖层褶皱构造变形分析[J]. 矿物岩石, 17(S1): 132-142. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS7S1.015.htm
|
董云鹏, 查显峰, 付明庆, 等, 2008. 秦岭南缘大巴山褶皱-冲断推覆构造的特征[J]. 地质通报, 27(9): 1493-1508. doi: 10.3969/j.issn.1671-2552.2008.09.011
|
丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力ps的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159. doi: 10.3969/j.issn.1000-7598.2012.07.035
|
李华兵, 王喆, 许峰, 等, 2019. 四川盆地北缘米仓山隆起页岩气储层特征研究[J]. 非常规油气, 6(6): 1-6. doi: 10.3969/j.issn.2095-8471.2019.06.001
|
李玉飞, 付永强, 唐庚, 等, 2012. 地应力类型影响定向井井壁稳定的规律[J]. 天然气工业, 32(3): 78-80, 130-131. doi: 10.3787/j.issn.1000-0976.2012.03.018
|
刘合, 孟思炜, 苏健, 等, 2019. 对中国页岩气压裂工程技术发展和工程管理的思考与建议[J]. 天然气工业, 39(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201904002.htm
|
刘曰武, 高大鹏, 李奇, 等, 2019. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 49(1): 201901. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201900001.htm
|
秦向辉, 陈群策, 赵星光, 等, 2020. 水压致裂地应力测量中系统柔度影响试验研究[J]. 岩石力学与工程学报, 39(6): 1189-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006010.htm
|
孙东生, 陈群策, 李阿伟, 2018-10-19. 一种水路转换开关及封隔器控制装置: 中国, 106761556B[P].
|
孙东生, 庞飞, 李阿伟, 等, 2020. 基于流变模型的地应力剖面预测: 以贵州黔北地区安页1井为例[J]. 天然气工业, 40(3): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003010.htm
|
田涛, 付德亮, 周世新, 等, 2020. 米仓山-汉南隆起区牛蹄塘组页岩古氧相及其与有机质富集的关系[J]. 兰州大学学报: 自然科学版, 56(1): 37-47, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202001005.htm
|
王宗起, 闫全人, 闫臻, 等, 2009. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 83(11): 1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
|
危自根, 储日升, 杨小林, 等, 2019. 汉中盆地及邻区地壳结构和地震活动性研究[J]. 地震学报, 41(4): 445-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201904004.htm
|
谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 47(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016
|
谢富仁, 崔效锋, 2015. 中国及邻区现代构造应力场图[Z]. 北京: 中国地图出版社.
|
谢和平, 高峰, 鞠杨, 等, 2016. 页岩气储层改造的体破裂理论与技术构想[J]. 科学通报, 61(1): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201601007.htm
|
许长春, 2012. 国内页岩气地质理论研究进展[J]. 特种油气藏, 19(1): 9-16. doi: 10.3969/j.issn.1006-6535.2012.01.002
|
薛浩, 高华新, 2013. 中国页岩气现状和未来简介[J]. 上海节能(9): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJL201309005.htm
|
杨树新, 姚瑞, 崔效锋, 等, 2012. 中国大陆与各活动地块、南北地震带实测应力特征分析[J]. 地球物理学报, 55(12): 4207-4217. doi: 10.6038/j.issn.0001-5733.2012.12.032
|
翟刚毅, 王玉芳, 刘国恒, 等, 2020. 鄂西地区震旦系—寒武系页岩气成藏模式[J]. 地质力学学报, 26(5): 696-713, doi: 10.12090/j.issn.1006-6616.2020.26.05.058.
|
张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
|
张鹏, 孙治国, 王秋宁, 等, 2017. 木寨岭深埋隧道北段地应力测量与围岩稳定性分析[J]. 地质力学学报, 23(6): 893-903. https://journal.geomech.ac.cn/article/id/0febae11-4b7b-4e07-a1a7-24791d29026a
|
张欣, 2010. 南秦岭紫阳-镇巴地区基性侵入体动力学机制及地质意义讨论[D]. 西安: 长安大学.
|
张晓琪, 赵达成, 李章志贤, 等, 2021. 扬子陆块西北缘拉伸纪三期岩浆作用对Rodinia超大陆裂解的指示意义[J]. 西北大学学报(自然科学版), 51(6): 1042-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202106011.htm
|
张文军, 秦绪乾, 郜瑭珺, 等, 2016. 米仓山隆起中新生代构造特征与形成演化探讨[J]. 天然气技术与经济, 10(2): 22-25, 33. doi: 10.3969/j.issn.2095-1132.2016.02.006
|