Volume 28 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
MENG Wen, TIAN Tao, SUN Dongsheng, et al., 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model. Journal of Geomechanics, 28 (4): 537-549. DOI: 10.12090/j.issn.1006-6616.2022041
Citation: MENG Wen, TIAN Tao, SUN Dongsheng, et al., 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model. Journal of Geomechanics, 28 (4): 537-549. DOI: 10.12090/j.issn.1006-6616.2022041

Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model

doi: 10.12090/j.issn.1006-6616.2022041
Funds:

the China Geological Survey DD20211376

the NSF of China 41702351

More Information
  • Received: 2022-04-08
  • Revised: 2022-06-27
  • Accurately determining the stress state in deep shale reservoirs is the key to the efficient development of shale gas and other unconventional energy sources. An effective method to increase the evaluation and calculation accuracy of in-situ stress parameters in a deep shale reservoir is to combine different methods to obtain different stress information, such as obtaining the minimum horizontal principal stress based on the in-situ stress measurement, predicting the magnitudes of horizontal stress difference and the horizontal principal stresses by establishing the stress profile based on the rheological model, and estimating the direction of the maximum horizontal principal stress by the wellbore failure imaging logging. We applied this research idea to Well SZ1 in Hanzhong, Shaanxi Province. The minimum horizontal principal stress obtained by hydraulic fracturing ranged from 32 to 41 MPa; Then, the variation laws of rock rheological parameters with the depth were determined by the rock mechanical parameters obtained from cross-dipole acoustic logging data. And combined with the burial history of the reservoir and the strain rate of the crust, the stress profile of Well SZ1 was established. The results show that the magnitude of horizontal stress difference in the depth range of 1950~2025 m in the Niutitang Formation is between 10~15 MPa, and ranges of the minimum and maximum principal stresses are 28~41 MPa and 47~49 MPa, respectively. The predicted horizontal minimum principal stress values are in good agreement with the measured results. Based on the in situ stress measurement and predicted stress profiles, Well SZ1 is characterized by normal faulting (Sv > SH > Sh)or a combination of normal and strike-slip faulting regimes (SvSH > Sh).The horizontal stress difference decreases with the increase of the gamma value, indicating that the stress profile has a good corresponding relationship with the formation lithology. Based on the distribution characteristics of borehole-induced tensile fractures recorded by imaging logging, the direction of the maximum horizontal principal stress in Well SZ1 is ~N74°W, which is consistent with the direction of the regional tectonic stress field. This study provides an important basis for accurately understanding the in-situ stress state of the target layer of Well SZ1, as well as the later horizontal well layout and fracturing control.

     

  • loading
  • ANDERSON E M, 1951. The dynamics of faulting and Dike formation with application to Britain[M]. 2nd ed. Edinburgh, U.K. : Oliver and Boyd.
    ANGELIER J, 1979. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics, 56(3-4): T17-T26. doi: 10.1016/0040-1951(79)90081-7
    BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
    CHANG L J, DING Z F, WANG C Y, 2021. Upper mantle anisotropy and implications beneath the central and western North China and the NE margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 64(1): 114-130. (in Chinese with English abstract)
    CHANG Y, XU C H, REINERS P W, et al., 2010. The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous: Evidence from apatite (U-Th)/He dating[J]. Chinese Journal of Geophysics, 53(4): 912-919. (in Chinese with English abstract)
    CHEN M, JIN Y, LU Y H, 2017. Shale gas development: Opportunities and challenges for rock mechanics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 47(11): 114601. (in Chinese with English abstract)
    CHEN N, WANG C H, CHEN P Z, et al., 2021. Re-analyzing the in-situ stress field in the right bank of the Baihetan hydroelectric power plant using the borehole breakout data[J]. Journal of Geomechanics, 27(3): 430-440, doi: 10.12090/j.issn.1006-6616.2021.27.03.039.
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)
    DENG M S, 1997. Deformational analysis of the fold structure of sedimentary cover in Micangshan area[J]. Journal of Mineralogy and Petrology, 17(S1): 132-142. (in Chinese with English abstract)
    DONG Y P, ZHA X F, FU M Q, et al., 2008. Characteristics of the Dabashan fold-thrust nappe structure at the southern margin of the Qinling, China[J]. Geological Bulletin of China, 27(9): 1493-1508. (in Chinese with English abstract)
    FENG C J, CHEN Q C, WU M L, et al., 2012. Analysis of hydraulic fracturing stress measurement data: discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract)
    HAIMSON B C, 1978. The hydrofracturing stress measuring method and recent field results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(4): 167-178.
    HAIMSON B C, CORNET F H, 2003. ISRM Suggested Methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    HEIDBACH O, RAJABI M, REITER K, et al., 2016. World stress map database release 2016[DB/OL]. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001.
    HOSSAIN M M, RAHMAN M K, RAHMAN S S, 2000. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering, 27(3-4): 129-149. doi: 10.1016/S0920-4105(00)00056-5
    HU X P, ZANG A, HEIDBACH O, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005
    HUANG J S, GRIFFITHS D V, WONG S W, 2012. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 49: 59-67. doi: 10.1016/j.ijrmms.2011.11.014
    ITO T, EVANS K, KAWAI K, et al., 1999. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 36(6): 811-826. doi: 10.1016/S0148-9062(99)00053-4
    JAEGER J C, COOK N G W, 1969. Fundamentals of rock mechanics[M]. London: Methuen & Co. : 513.
    LI H B, WANG Z, XU F, et al., 2019. Shale gas reservoirs characteristics of Micang Mountain uplift in the north of the Sichuan Basin[J]. Unconventional Oil & Gas, 6(6): 1-6. (in Chinese with English abstract)
    LI Y F, FU Y Q, TANG G, 2012. Laws of the effects of earth stress patterns on wellbore stability in a directional well[J]. Natural Gas Industry, 32(3): 78-80, 130-131. (in Chinese with English abstract)
    LIU H, MENG S W, SU J, et al., 2019. Reflections and suggestions on the development and engineering management of shale gas fracturing technology in China[J]. Natural Gas Industry, 39(4): 1-7. (in Chinese with English abstract)
    LIU Y W, GAO D P, LI Q, et al., 2019. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics, 49(1): 201901. (in Chinese with English abstract)
    MA X D, ZOBACK M D, 2017. Lithology-controlled stress variations and pad-scale faults: A case study of hydraulic fracturing in the Woodford Shale, Oklahoma[J]. Geophysics, 82(6): ID35-ID44. doi: 10.1190/geo2017-0044.1
    MENG W, CHEN Q C, ZHAO Z, et al., 2015. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 656: 1-19. doi: 10.1016/j.tecto.2015.04.010
    PÖPPELREITER M, CARMEN G C, KRAAIJVELD M, 2010. Borehole image log technology: application across the exploration and production life cycle[M]//PÖPPELREITER M, GARCÍA-CARBALLIDO C, KRAAIJVELD M. Dipmeter and borehole image log technology. Denver, CO, USA: American Association of Petroleum Geologists: 81-112.
    QIN X H, CHEN Q C, ZHAO X G, et al., 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements[J]. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189-1202. (in Chinese with English abstract)
    ROSS D J K, BUSTIN R M, 2008. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin: Application of an integrated formation evaluation[J]. AAPG Bulletin, 92(1): 87-125. doi: 10.1306/09040707048
    SCHULTZ R, ATKINSON G, EATON D W, et al., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play[J]. Science, 359(6373): 304-308. doi: 10.1126/science.aao0159
    SONE H, 2012. Mechanical properties of shale gas reservoir rocks, and its relation to the in-situ stress variation observed in shale gas reservoirs[D]. Stanford: Stanford University: 97-189.
    SONE H, ZOBACK M D, 2014a. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress[J]. International Journal of Rock Mechanics and Mining Sciences, 69: 120-132. doi: 10.1016/j.ijrmms.2014.04.002
    SONE H, ZOBACK M D, 2014b. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 124: 416-431. doi: 10.1016/j.petrol.2014.09.022
    SUN D S, CHEN Q C, LI A W, 2018-10-19. A waterway switch and packer control device: CN, 106761556B[P]. (in Chinese)
    SUN D S, PANG F, LI A W, et al., 2020. In-situ stress profile prediction based on the rheological model: A case study of Well AY-1 in the Qianbei area of Guizhou province[J]. Natural Gas Industry, 40(3): 58-64. (in Chinese with English abstract)
    TIAN T, FU D L, ZHOU S X, et al., 2020. The paleo-redox conditions of the shale in Niutitang Formation and its effects on organic matter enrichment of the Micangshan-Hannan Uplift[J]. Journal of Lanzhou University: Natural Sciences, 56(1): 37-47, 55. (in Chinese with English abstract)
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.
    WANG Z Q, YAN Q R, YAN Z, et al., 2009. New division of the main tectonic units of the Qinling Orogenic belt, Central China[J]. Acta Geologica Sinica, 83(11): 1527-1546. (in Chinese with English abstract)
    WEI Z G, CHU R S, YANG X L, et al., 2019. Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas[J]. Acta Seismologica Sinica, 41(4): 445-458. (in Chinese with English abstract)
    XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract)
    XIE F R, CUI X F, 2015. Stress map of the recent tectonic stress field in China and adjacent areas[Z]. Beijing: Sino Maps Press. (in Chinese)
    XIE H P, GAO F, JU Y, et al., 2016. Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs[J]. Chinese Science Bulletin, 61(1): 34-46. (in Chinese with English abstract) doi: 10.1360/zk2016-61-1-34
    XU C C, 2012. Research progress in shale gas geological theory in China[J]. Special Oil & Gas Reservoirs, 19(1): 9-16. (in Chinese with English abstract)
    XUE H, GAO H X, 2013. Introduction to the current situation and future of shale gas in China[J]. Shanghai Energy Conservation(9): 9-13. (in Chinese)
    YANG S X, YAO R, CUI X F, et al., 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt[J]. Chinese Journal of Geophysics, 55(12): 4207-4217. (in Chinese with English abstract)
    ZANG A, STEPHANSSON O, 2010. Stress field of the Earth' s crust[M]. Dordrecht: Springer.
    ZHAI G Y, WANG Y F, LIU G H, et al., 2020. Accumulation model of the Sinian-Cambrian shale gas in western Hubei Province, China[J]. Journal of Geomechanics, 26(5): 696-713.
    ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract)
    ZHANG P, SUN Z G, WANG Q N, et al., 2017. In-situ stress measurement and stability analysis of surrounding rocks in the north section of deep buried tunnel in Muzhailing[J]. Journal of Geomechanics, 23(6): 893-903. (in Chinese with English abstract)
    ZHANG W J, QIN X Q, GAO T J, et al., 2016. Characteristics and Evolution of Middle Cenozoic Tectonics, Micangshan Uplift Belt[J]. Natural gas technology and economy, 10(2): 22-25, 33. (in Chinese with English abstract)
    ZHANG X, 2010. The dynamic mechanism and geological significance of mafic intrusion in the Ziyang-Zhenba Area, South Qinling[D]. Xi' an: Chang' an University.
    ZHANG X Q, ZHAO D C, LI Z Z X, et al., 2021. The implications of three stages of Tonian magmatism in the northwestern margin of the Yangtze Block on the breakup of the Rodinia supercontinent[J]. Journal of Northwest University (Natural Science Edition), 51(6): 1042-1056. (in Chinese with English abstract)
    ZHOU Z, JIN Y, ZENG Y J, et al., 2020. Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing[J]. Renewable Energy, 153: 301-313. doi: 10.1016/j.renene.2020.01.128
    ZOBACK M D, TOWNEND J, 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 336(1-4): 19-30. doi: 10.1016/S0040-1951(01)00091-9
    ZOBACK M D, 2007. Reservoir geomechanics[M]. New York: Cambridge University Press: 1-505.
    常利军, 丁志峰, 王椿镛, 2021. 华北中西部和青藏高原东北缘上地幔各向异性变形特征[J]. 地球物理学报, 64(1): 114-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202101008.htm
    常远, 许长海, REINERS P W, 等, 2010. 米仓山-汉南隆起白垩纪以来的剥露作用: 磷灰石(U-Th)/He年龄记录[J]. 地球物理学报, 53(4): 912-919. doi: 10.3969/j.issn.0001-5733.2010.04.016
    陈勉, 金衍, 卢运虎, 2017. 页岩气开发: 岩石力学的机遇与挑战[J]. 中国科学: 物理学 力学 天文学, 47(11): 114601. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711002.htm
    陈念, 王成虎, 陈平志, 等, 2021. 利用钻孔崩落数据再认识白鹤滩右岸地应力场特征[J]. 地质力学学报, 27(3): 430-440, doi: 10.12090/j.issn.1006-6616.2021.27.03.039.
    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
    邓明森, 1997. 米仓山区盖层褶皱构造变形分析[J]. 矿物岩石, 17(S1): 132-142. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS7S1.015.htm
    董云鹏, 查显峰, 付明庆, 等, 2008. 秦岭南缘大巴山褶皱-冲断推覆构造的特征[J]. 地质通报, 27(9): 1493-1508. doi: 10.3969/j.issn.1671-2552.2008.09.011
    丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力ps的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159. doi: 10.3969/j.issn.1000-7598.2012.07.035
    李华兵, 王喆, 许峰, 等, 2019. 四川盆地北缘米仓山隆起页岩气储层特征研究[J]. 非常规油气, 6(6): 1-6. doi: 10.3969/j.issn.2095-8471.2019.06.001
    李玉飞, 付永强, 唐庚, 等, 2012. 地应力类型影响定向井井壁稳定的规律[J]. 天然气工业, 32(3): 78-80, 130-131. doi: 10.3787/j.issn.1000-0976.2012.03.018
    刘合, 孟思炜, 苏健, 等, 2019. 对中国页岩气压裂工程技术发展和工程管理的思考与建议[J]. 天然气工业, 39(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201904002.htm
    刘曰武, 高大鹏, 李奇, 等, 2019. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 49(1): 201901. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201900001.htm
    秦向辉, 陈群策, 赵星光, 等, 2020. 水压致裂地应力测量中系统柔度影响试验研究[J]. 岩石力学与工程学报, 39(6): 1189-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006010.htm
    孙东生, 陈群策, 李阿伟, 2018-10-19. 一种水路转换开关及封隔器控制装置: 中国, 106761556B[P].
    孙东生, 庞飞, 李阿伟, 等, 2020. 基于流变模型的地应力剖面预测: 以贵州黔北地区安页1井为例[J]. 天然气工业, 40(3): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003010.htm
    田涛, 付德亮, 周世新, 等, 2020. 米仓山-汉南隆起区牛蹄塘组页岩古氧相及其与有机质富集的关系[J]. 兰州大学学报: 自然科学版, 56(1): 37-47, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202001005.htm
    王宗起, 闫全人, 闫臻, 等, 2009. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 83(11): 1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
    危自根, 储日升, 杨小林, 等, 2019. 汉中盆地及邻区地壳结构和地震活动性研究[J]. 地震学报, 41(4): 445-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201904004.htm
    谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 47(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016
    谢富仁, 崔效锋, 2015. 中国及邻区现代构造应力场图[Z]. 北京: 中国地图出版社.
    谢和平, 高峰, 鞠杨, 等, 2016. 页岩气储层改造的体破裂理论与技术构想[J]. 科学通报, 61(1): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201601007.htm
    许长春, 2012. 国内页岩气地质理论研究进展[J]. 特种油气藏, 19(1): 9-16. doi: 10.3969/j.issn.1006-6535.2012.01.002
    薛浩, 高华新, 2013. 中国页岩气现状和未来简介[J]. 上海节能(9): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJL201309005.htm
    杨树新, 姚瑞, 崔效锋, 等, 2012. 中国大陆与各活动地块、南北地震带实测应力特征分析[J]. 地球物理学报, 55(12): 4207-4217. doi: 10.6038/j.issn.0001-5733.2012.12.032
    翟刚毅, 王玉芳, 刘国恒, 等, 2020. 鄂西地区震旦系—寒武系页岩气成藏模式[J]. 地质力学学报, 26(5): 696-713, doi: 10.12090/j.issn.1006-6616.2020.26.05.058.
    张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
    张鹏, 孙治国, 王秋宁, 等, 2017. 木寨岭深埋隧道北段地应力测量与围岩稳定性分析[J]. 地质力学学报, 23(6): 893-903. https://journal.geomech.ac.cn/article/id/0febae11-4b7b-4e07-a1a7-24791d29026a
    张欣, 2010. 南秦岭紫阳-镇巴地区基性侵入体动力学机制及地质意义讨论[D]. 西安: 长安大学.
    张晓琪, 赵达成, 李章志贤, 等, 2021. 扬子陆块西北缘拉伸纪三期岩浆作用对Rodinia超大陆裂解的指示意义[J]. 西北大学学报(自然科学版), 51(6): 1042-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202106011.htm
    张文军, 秦绪乾, 郜瑭珺, 等, 2016. 米仓山隆起中新生代构造特征与形成演化探讨[J]. 天然气技术与经济, 10(2): 22-25, 33. doi: 10.3969/j.issn.2095-1132.2016.02.006
  • 加载中

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (405) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return