Citation: | LI Zongyao, SHENG Mei, JIANG Kai, et al., 2022. Provenance study of the Xining loess in the Northeastern Tibetan Plateau, China. Journal of Geomechanics, 28 (4): 605-616. DOI: 10.12090/j.issn.1006-6616.2022029 |
ANZ S, 2000. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 19(1-5): 171-187. doi: 10.1016/S0277-3791(99)00060-8
|
BIRD A, STEVENS T, RITTNER M, et al., 2015. Quaternary dust source variation across the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 254-264. doi: 10.1016/j.palaeo.2015.06.024
|
CHE X D, LI G J, 2013. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon[J]. Quaternary Research, 80(3): 545-551. doi: 10.1016/j.yqres.2013.05.007
|
CHEN J, LI G J, YANG J D, et al., 2007. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 71(15): 3904-3914. doi: 10.1016/j.gca.2007.04.033
|
CHEN J, LI G J, 2011. Geochemical studies on the source region of Asian dust[J]. Science ChinaEarth Sciences, 54(9): 1279-1301.
|
CHEN Y, FANG X M, SONG C H, et al., 2012. The uplift and erosion of the Tianshan Mountains recorded by detrital zircon geochronology from the Cenozoic sediments in the southern Junggar Basin[J]. Earth Science Frontiers, 19(5): 225-233. (in Chinese with English abstract)
|
CHENG Y, LI X Q, ZHAO Z Y, et al., 2018. Detrital zircon U-Pb ages and its provenance significance in the TZK3 core from the Yangtze River delta[J]. Journal of Geomechanics, 24(5): 635-644. (in Chinese with English abstract)
|
CHU H, ZHANG J R, WEI C J, et al., 2013. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia[J]. Chinese Science Bulletin, 58(28-29): 3580-3587. doi: 10.1007/s11434-013-5862-7
|
FENN K, STEVENS T, BIRD A, et al., 2018. Insights into the provenance of the Chinese Loess Plateau from joint zircon U-Pb and garnet geochemical analysis of last glacial loess[J]. Quaternary Research, 89(3): 645-659. doi: 10.1017/qua.2017.86
|
GEHRELS G E, YIN A, WANG X F, 2003. Detrital-zircon geochronology of the northeastern Tibetan plateau[J]. GSA Bulletin, 115(7): 881-896. doi: 10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2
|
GENG Y S, WANG X S, SHEN Q H, et al., 2006. Redefinition of the Alxa Group-complex (Precambrian metamorphic basement) in the Alxa area, Inner Mongolia[J]. Geology in China, 33(1): 138-145. (in Chinese with English abstract)
|
GUO P, LIU C Y, WANG J Q, et al., 2017. Considerations on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentologica Sinica, 35(1): 46-56. (in Chinese with English abstract)
|
GUO Z T, LIU T, FEDOROFF N, et al., 1998. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 18(3-4): 113-128. doi: 10.1016/S0921-8181(98)00010-1
|
HE X Y, FANG T H, BO H T, et al., 2022. Petrogenesis and tectonic significance of Late Permian-Middle Triassic granitoids in Guobaoshan, eastern section of the eastern Tianshan mountains: constraints from geochronology and geochemistry[J]. Journal of Geomechanics, 28(1): 126-142.
|
JAHN B M, GALLET S, HAN J M, 2001. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka[J]. Chemical Geology, 178(1-4): 71-94. doi: 10.1016/S0009-2541(00)00430-7
|
JI J F, CHEN J, LU H Y, 1999. Origin of illite in the loess from the Luochuan area, Loess Plateau, central China[J]. Clay Minerals, 34(4): 525-532. doi: 10.1180/000985599546398
|
JIAN P, LIU D Y, KR NER A, et al., 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth[J]. Lithos, 101(3-4): 233-259. doi: 10.1016/j.lithos.2007.07.005
|
LI G J, CHEN J, CHEN Y, et al., 2007. Dolomite as a tracer for the source regions of Asian dust[J]. Journal of Geophysical Research, 112(D17): D17201. doi: 10.1029/2007JD008676
|
LI G J, CHEN J, JI J F, et al., 2009. Natural and anthropogenic sources of East Asian dust[J]. Geology, 37(8): 727-730. doi: 10.1130/G30031A.1
|
LI G J, PETTKE T, CHEN J, 2011. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene[J]. Geology, 39(3): 199-202. doi: 10.1130/G31734.1
|
LI G J, CHE X D, XIAO G Q, et al., 2013. Zircon ages of Xining loess: implication for the provenance of the loess on Chinese Loess Plateau[J]. Quaternary Sciences, 33(2): 345-350. (in Chinese with English abstract)
|
LI S Z, YANG Z, ZHAO S J, et al., 2016. Global Early Paleozoic Orogens (Ⅱ): subduction-accretionary-type orogeny[J]. Journal of Jilin University (Earth Science Edition), 46(4): 968-1004. (in Chinese with English abstract)
|
LI Z, NIE S R, 1999. Xining loess deposition and its material sources, China[J]. Earth Science-Journal of China University of Geosciences, 24(6): 581-584. (in Chinese with English abstract)
|
LICHT A, PULLEN A, KAPP P, et al., 2016. Eolian cannibalism: reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau[J]. GSA Bulletin, 128(5-6): 944-956. doi: 10.1130/B31375.1
|
LIN X, LIU J, WU Z H, et al., 2021. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains[J]. Journal of Geomechanics, 27(2): 304-316. (in Chinese with English abstract)
|
LIU D S, 1985. Loess and the environment[M]. Beijing: Science Press: 1-215. (in Chinese)
|
LIU T, DING Z L, 1998. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Sciences, 26: 111-145. doi: 10.1146/annurev.earth.26.1.111
|
LU H Y, WANG X Y, WANG X Y, et al., 2012. Palaeoclimatic changes in northeastern Qinghai-Tibetan Plateau revealed by magnetostratigraphy and magnetic susceptibility analysis of thick loess deposits[J]. Natherlands Journal of Geoscience-Geologie en Mijnbouw, 91(1-2): 187-198.
|
MAHER B A, MUTCH T J, CUNNINGHAM D, 2009. Magnetic and geochemical characteristics of Gobi Desert surface sediments: implications for provenance of the Chinese Loess Plateau[J]. Geology, 37(3): 279-282. doi: 10.1130/G25293A.1
|
MAHER B A, PROSPERO J M, MACKIE D, et al., 2010. Global connections between Aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Reviews, 99(1-2): 61-97. doi: 10.1016/j.earscirev.2009.12.001
|
MIAO L C, ZHANG F Q, FAN W M, et al., 2007. Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China: constraints from geochronology of ophiolites and associated formations[M]//ZHAIMG, WINDLEYBF, KUSKYTM, et al. Mesozoic sub-continental lithospheric thinning under eastern Asia. London: Geological Society ofLondon, 280: 233-237.
|
NIE J S, PENG W B, 2014. Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau[J]. Aeolian Research, 13: 71-75. doi: 10.1016/j.aeolia.2014.03.005
|
NIE J S, STEVENS T, RITTNER M, et al., 2015. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 6: 8511. doi: 10.1038/ncomms9511
|
PULLEN A, KAPP P, MCCALLISTER A T, et al., 2011. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 39(11): 1031-1034. doi: 10.1130/G32296.1
|
SONG S G, NIU Y L, SU L, et al., 2013. Tectonics of the North Qilian Orogen, NW China[J]. Gondwana Research, 23(4): 1378-1401. doi: 10.1016/j.gr.2012.02.004
|
SONG S G, NIU Y L, SU L, et al., 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 129: 59-84. doi: 10.1016/j.earscirev.2013.11.010
|
STEVENS T, PALK C, CARTER A, et al., 2010. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons[J]. GSA Bulletin, 122(7-8): 1331-1344. doi: 10.1130/B30102.1
|
STEVENS T, CARTER A, WATSON T P, et al., 2013a. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 78: 355-368. doi: 10.1016/j.quascirev.2012.11.032
|
STEVENS T, ADAMIEC G, BIRD A F, et al., 2013b. An abrupt shift in dust source on the Chinese Loess Plateau revealed through high sampling resolution OSL dating[J]. Quaternary Science Reviews, 82: 121-132. doi: 10.1016/j.quascirev.2013.10.014
|
SU M R, LI Y L, LIU H C, et al., 2020. Paleoproterozoic basement in eastern Central Asia Orogenic Belt: evidence from granite and sedimentary strata in Sino-Mongolia border area[J]. Geology in China, 47(4): 1186-1203. (in Chinese with English abstract)
|
SUN J M, DING Z L, XIA X P, et al., 2018. Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau[J]. Journal of Asian Earth Sciences, 155: 21-34. doi: 10.1016/j.jseaes.2017.10.012
|
SUN Y B, TADA R J, CHEN J C, et al., 2008. Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau[J]. Geophysical Research Letters, 35(1): L01804.
|
SUN Y B, YAN Y, NIE J S, et al., 2020. Source-to-sink fluctuations of Asian Aeolian deposits since the late Oligocene[J]. Earth-Science Reviews, 200: 102963. doi: 10.1016/j.earscirev.2019.102963
|
TUNG K A, YANG H Y, LIU D Y, et al., 2007a. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance[J]. Chinese Science Bulletin, 52(10): 1414-1425. doi: 10.1007/s11434-007-0189-x
|
TUNG K A, YANG H J, YANG H Y, et al., 2007b. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances[J]. Chinese Science Bulletin, 52(10): 2687-2701.
|
VERMEESCH P, 2012. On the visualisation of detrital age distributions[J]. Chemical Geology, 312-313: 190-194. doi: 10.1016/j.chemgeo.2012.04.021
|
WANG X S, GAO J, KLEMD R, et al., 2014. Geochemistry and geochronology of the Precambrian high-grade metamorphic complex in the Southern Central Tianshan ophiolitic m lange, NW China[J]. Precambrian Research, 254: 129-148. doi: 10.1016/j.precamres.2014.08.017
|
WINDLEY B F, ALEXEIEV D, XIAO W J, et al., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31-47. doi: 10.1144/0016-76492006-022
|
WU C L, YANG J S, ROBINSON P T, et al., 2009. Geochemistry, age and tectonic significance of granitic rocks in north Altun, northwest China[J]. Lithos, 113(3-4): 423-436. doi: 10.1016/j.lithos.2009.05.009
|
WU C L, CHEN H J, WU D, et al., 2018. Paleozoic granitic magmatism and tectonic evolution of the South Altun block, NW China: constraints from zircon U-Pb dating and Lu-Hf isotope geochemistry[J]. Journal of Asian Earth Sciences, 160: 168-199. doi: 10.1016/j.jseaes.2018.04.019
|
XIA L Q, LI X M, YU J Y, et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 43(4): 1087-1138. (in Chinese with English abstract)
|
XIAO G Q, ZONG K Q, LI G J, et al., 2012. Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau[J]. Geophysical Research Letters, 39(20): L20715.
|
XIAO W J, WINDLEY B F, HUANG B C, et al., 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z
|
XIAO W J, WINDLEY B F, SUN S, et al., 2015. A tale of amalgamation of Three Permo-Triassic collage systems in central Asia: Oroclines, Sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477-507. doi: 10.1146/annurev-earth-060614-105254
|
XIE J, WU F Y, DING Z L, 2007. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance[J]. Acta Petrologica Sinica, 23(2): 523-528. (in Chinese with English abstract)
|
XIE J, YANG S L, DING Z L, et al., 2012. Methods and application of using detrital zircons to trace the provenance of loess[J]. Science ChinaEarth Sciences, 55(11): 1837-1846.
|
XIU Q Y, YU H F, LI Q, et al., 2004. Discussion on the petrogenic time of Longshoushan Group, Gansu Province[J]. Acta Geologica Sinica, 78(3): 366-373. (in Chinese with English abstract)
|
XU X W, LI X H, JIANG N, et al. 2015. Basement nature and origin of the Junggar terrane: new zircon U-Pb-Hf isotope evidence from Paleozoic rocks and their enclaves[J]. Gondwana Research, 28(1): 288-310. doi: 10.1016/j.gr.2014.03.011
|
XU X Y, HE S P, WANG H L, et al. 2008. An Introduction to the geology of Northwest China: Qinling, Qilian and Tianshan regions[M]. Beijing: China Ocean Press.
|
YANG H, ZHANG H F, LUO B J, et al., 2015. Early Paleozoic intrusive rocks from the eastern Qilian orogen, NE Tibetan Plateau: Petrogenesis and tectonic significance[J]. Lithos, 224-225: 13-31. doi: 10.1016/j.lithos.2015.02.020
|
YU S Y, ZHANG J X, LI S Z, et al., 2018. Continuity of the North Qilian and North Altun orogenic belts of NW China: evidence from newly discovered Palaeozoic Low-Mg and high-Mg adakitic rocks[J]. Geological Magazine, 155(8): 1684-1704. doi: 10.1017/S0016756817000565
|
YUAN Y, ZONG K Q, HE Z Y, et al., 2018. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Lithos, 302-303: 189-202. doi: 10.1016/j.lithos.2017.12.026
|
ZHANG H B, NIE J S, LIU X J, et al., 2021. Spatially variable provenance of the Chinese Loess Plateau[J]. Geology, 49(10): 1155-1159. doi: 10.1130/G48867.1
|
ZHANG H Z, LU H Y, XU X S, et al., 2016. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns[J]. Journal of Geophysical Research, 121(11): 2058-2099.
|
ZHANG H Z, LU H Y, STEVENS T, et al., 2018. Expansion of dust provenance and aridification of Asia since ~7.2 Ma revealed by detrital zircon U-Pb dating[J]. Geophysical Research Letters, 45(24): 13437-13448.
|
ZHANG J X, YU S Y, GONG J H, et al., 2013. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: evidence from zircon U-Pb dating and Hf isotopic analyses[J]. Precambrian Research, 226: 21-42. doi: 10.1016/j.precamres.2012.11.014
|
ZHANG S, JIAN X, PULLEN A, et al., 2020. Tectono-magmatic events of the Qilian orogenic belt in northern Tibet: new insights from detrital zircon geochronology of river sands[J]. International Geology Review, 63(8): 917-940.
|
ZHANG S H, ZHAO Y, KR NER A, et al., 2009. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 98(6): 1441-1467. doi: 10.1007/s00531-008-0368-2
|
ZHAO Y, SUN Y, YAN J H, et al., 2015. The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: constraints from zircon U-Pb geochronology and in situ Hf isotopes[J]. Precambrian Research, 271: 83-97. doi: 10.1016/j.precamres.2015.10.002
|
ZHENG R G, WU T R, ZHANG W, et al., 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 25(2): 842-858. doi: 10.1016/j.gr.2013.05.011
|
ZUZA A V, WU C, REITH R C, et al., 2017. Tectonic evolution of the Qilian Shan: an early Paleozoic orogen reactivated in the Cenozoic[J]. GSA Bulletin, 130(5-6): 881-925.
|
陈熠, 方小敏, 宋春晖, 等, 2012. 准噶尔盆地南缘新生代沉积物碎屑锆石记录的天山隆升剥蚀过程[J]. 地学前缘, 19(5): 225-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205023.htm
|
程瑜, 李向前, 赵增玉, 等, 2018. 长江三角洲地区TZK3孔碎屑锆石U-Pb年龄及其物源意义[J]. 地质力学学报, 24(5): 635-644. doi: 10.12090/j.issn.1006-6616.2018.24.05.064
|
耿元生, 王新社, 沈其韩, 等, 2006. 内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J]. 中国地质, 33(1): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601014.htm
|
郭佩, 刘池洋, 王建强, 等, 2017. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报, 35(1): 46-56.
|
贺昕宇, 方同辉, 薄贺天, 等, 2022. 东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义: 年代学和地球化学约束[J]. 地质力学学报, 28(1): 126-142. doi: 10.12090/j.issn.1006-6616.20222807
|
李高军, 车旭东, 肖国桥, 等, 2013. 西宁黄土碎屑锆石年龄特征及其对黄土高原黄土物源的指示意义[J]. 第四纪研究, 33(2): 345-350.
|
李珍, 聂树人, 1999. 西宁黄土沉积及其物质来源[J]. 地球科学: 中国地质大学学报, 24(6): 581-584. doi: 10.3321/j.issn:1000-2383.1999.06.006
|
刘东生, 1985. 黄土与环境[M]. 北京: 中国海洋出版社.
|
林旭, 刘静, 吴中海, 等, 2021. 渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报, 27(2): 304-316. doi: 10.12090/j.issn.1006-6616.2021.27.02.028
|
苏茂荣, 李英雷, 刘汇川, 等, 2020. 中亚造山带东段古元古代结晶基底: 来自中蒙边境花岗岩和沉积地层的证据[J]. 中国地质, 47(4): 1186-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004019.htm
|
夏林圻, 李向民, 余吉远, 等, 2016. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 43(4): 1087-1138.
|
谢静, 吴福元, 丁仲礼, 2007. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报, 23(2): 523-528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702029.htm
|
修群业, 于海峰, 李铨, 等, 2004. 龙首山岩群成岩时代探讨[J]. 地质学报, 78(3): 366-373. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200403009.htm
|
徐学义, 何世平, 王洪亮, 等, 2008. 中国西北部地质概论: 秦岭、祁连、天山地区[M]. 北京: 科学出版社.
|