Citation: | PAN Tingting, HU Xueping, REN Tianxiang, et al., 2022. Seismic response analysis of the subway station structure under the coupling action of P and S seismic waves with the time difference. Journal of Geomechanics, 28 (4): 596-604. DOI: 10.12090/j.issn.1006-6616.2022028 |
CHEN W B, ZHUANG H Y, LI S, et al., 2021. Seismic performance of the three-layer three-span subway underground station structure with seismic isolation bearings fixed on the top of columns[J]. Technology for Earthquake Disaster Prevention, (1): 146-156. (in Chinese with English abstract)
|
CHEN W H, Bao H Y. Influence of tunnel lining-soil interface viscoelasticity on subway vibration propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, (202): 3460-3468. (in Chinese with English abstract)
|
CHEN X, CHEN Q J, 2021. Seismic Mitigation Effect Analysis of Subway Station Center Column Subjected to Near-Fault Ground Motions[J]. Chinese Quarterly of Mechanics, 42(1): 67-79. (in Chinese with English abstract)
|
CHEN Z Y, LIU W B, CHEN W, 2020. Performance experiment of a multi-story subway station[J]. Journal of Tongji University(Natural Science), 48(6): 811-820. (in Chinese with English abstract)
|
CUI F P, 2009. Study on collapsing and sliding response of slope triggered by single and combined action with time difference of P and S seismic waves[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Science. (in Chinese with English abstract)
|
DU X L, WANG G, LU D C, 2016. Earthquake damage mechanism analysis of Dakai metro station by Kobe earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 36(2): 165-171. (in Chinese with English abstract)
|
DU X L, MA C, LU D C, et al., 2017. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 50(1): 53-62, 69. (in Chinese with English abstract)
|
DU X L, LI Y, XU C S, et al., 2018. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 40(2): 223-236. (in Chinese with English abstract)
|
GAI H L, YAO S H, YANG L P, et al., 2021. Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS 7.4 Earthquake in Maduo, Qinghai, and their significance. Journal of Geomechanics, 27 (6): 899-912. (in Chinese with English abstract)
|
GU K S, GUO M Z, TANG X W, et al., 2022. Dynamic response and spectrum characteristics of anti-dip rock slopes under earthquake[J]. China Earthquake Engineering Journal, 44(1): 62-71. (in Chinese with English abstract)
|
GUO S B, ZHAO Y, ZHAO Y T, et al., 2002. Dynamic analysis of underground structures under vertical horizontal seismic excitations[J]. Underground Space, 22(4): 314-319. (in Chinese with English abstract)
|
HAN X C, TAO L J, LIU C X, et al., 2020. Analysis of influencing factors of seismic response of connected parallel subway stations[J]. Journal of Beijing University of Technology, 2020, 46(8): 929-939. (in Chinese with English abstract)
|
LI J, LI G Q, 1992. Introduction of earthquake engineering[M]. Beijing: Seismological Publishing House. (in Chinese with English abstract)
|
LI Y, XU C S, DU X L, 2020. Causal analyses of different degree of earthquake damage occurred on Daikai subway station and its running tunnels during Kobe earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 40(3): 326-336. (in Chinese with English abstract)
|
LIU L, LIU X L, ZHOU J X, 2018. Numerical analysis on dynamic response of the oblique metro tunnel in ground fissure area[J]. Journal of Geomechanics, 24 (2): 238-243. (in Chinese with English abstract)
|
LIU L B, LI H B, LIU Y Q, 2017. Ground Motion Amplification Effect of High and Steep Slope[J]. Journal of Yangtze River Scientific Research Institute, 34(9): 98-103. (in Chinese with English abstract)
|
MENG Q, GAO K, CHEN Q Z, et al., 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: Numerical simulation analysis. Journal of Geomechanics, 27 (4): 614-627. (in Chinese with English abstract)
|
TAO L J, LIU C X, BIAN J, et al., 2017. Seismic response of subway station with large span and Y shaped column[J]. Chinese Journal of Theoretical and Applied Mechanics, 49(1): 55-64. (in Chinese with English abstract)
|
TAO L J, LIU S, HAN X C, et al., 2019. Seismic response analysis of subway stations with above-ground high-rise structures[J]. Journal of Heilongjiang University of Science and Technology, 29(5): 569-574. (in Chinese with English abstract)
|
WANG J H, ZHOU X J, LIU J G, et al., 2017. Numerical analysis of the transverse dynamic response of mountain tunnels subjected to an oblique incidence of earthquake waves[J]. Modern Tunnelling Technology, 54(3): 90-97. (in Chinese with English abstract)
|
XIONG L X, LI T B, LIU Y, 2007. Numerical simulation of seismic response at the entrance of the unsymmetrical loading tunnel[J]. Journal of Geomechanics, 13(3): 255-260. (in Chinese with English abstract)
|
XU C S, XU Z G, DU X L, et al., 2017. Comparative study of simplified methods for seismic analysis of underground structure[J]. Earthquake Engineering and Engineering Vibration, 37(2). 65-80. (in Chinese with English abstract)
|
XU Y J, LIANG W Z, LIU X M, et al., 2017. Soil Mass Stability at the Working Face of a Rectangular Pipe-Jacking Tunnel with a Large Section[J]. Modern Tunnelling Technology, 54(5): 70-77, 85. (in Chinese with English abstract)
|
YANG Y Q, WANG X S, WANG Y G, et al., 2016. Seismogenic fault segmentation of Tangshan earthquake sequence derived from focal mechanism solutionsl[J]. Acta Seismologica Sinica, 38(4): 632-643. (in Chinese with English abstract)
|
YANG Y F, GUAN Q, SUN R H, et al., 2017. Numerical simulation analysis of deep foundation pit deformation by top-down construction method based on FLAC-3D[J]. Journal of Hefei University of Technology(Natural Science), 40(4): 522-527. (in Chinese with English abstract)
|
YU Z Y, ZHANG H Z, QIU Y, et al., 2021. Shaking table tests for cross subway station structure[J]. Journal of Vibration and Shock, 2021, 40(9): 142-151. (in Chinese with English abstract)
|
ZHANG K, LI W H, ZHAO C G, 2020. Application of equivalent linear method in underwater site analysis under oblique incidence of seismic waves[J]. Journal of Vibration and Shock, 39(22): 41-49. (in Chinese with English abstract)
|
ZHANG W B, ZHOU H Z, ZHENG G, et al., 2021. Seismic response analysis of connection between metro station and tunnel[J]. China Earthquake Engineering Journal, 2: 438-444. (in Chinese with English abstract)
|
ZHANG Y B, LIU J, TANG Y B, et al., 2021. Dynamic Response Analysis of Seismic Slopes Considering Topographic Effect[J]. China Earthquake Engineering Journal, 43(1): 142-153. (in Chinese with English abstract)
|
ZHAO J, WU H G, YANG T, 2019. Research on dynamic response of highway bridge unstable slope treatment project based on FLAC3D[J]. World Earthquake Engineering, 35(3): 177-185. (in Chinese with English abstract)
|
ZHUANG H Y, CHENG S G, CHEN G X, 2008. Numerical simulation and analysis of earthquake dam ages of Dakai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 29(1): 246-250. (in Chinese with English abstract)
|
ZHUANG H Y, WANG X J, WANG R, et al., 2017. Characteristics of lateral deformation of soil-subway dynamic interaction system. Chinese Journal of Geotechnical Engineering, 39(10): 1761-1769. (in Chinese with English abstract)
|
陈文斌, 庄海洋, 李晟, 等, 2021. 基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究[J]. 震灾防御技术, (1): 146-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101015.htm
|
陈文化, 包汉营. 隧道衬砌-土层接触面黏-弹性对地铁空间振动传播的影响[J]. 岩石力学与工程学报, 2019, (202): 3460-3468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2021.htm
|
陈曦, 陈清军, 2021. 近断层地震动作用下地铁车站中柱减震效果研究[J]. 力学季刊, 42(1): 67-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX202101007.htm
|
陈之毅, 刘文博, 陈炜, 2020. 多层地铁车站结构性能试验研究[J]. 同济大学学报: 自然科学版, 48(6): 811-820. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202006005.htm
|
崔芳鹏, 2009. 地震P-S波时差耦合作用的斜坡崩滑效应研究[D]. 北京: 中国科学院地质与地球物理研究所.
|
杜修力, 王刚, 路德春, 2016. 日本阪神地震中大开地铁车站地震破坏机理分析[J]. 防灾减灾工程学报, 36(2): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602001.htm
|
杜修力, 马超, 路德春, 等, 2017. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 50(1): 53-62, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
|
杜修力, 李洋, 许成顺, 等, 2018. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm
|
盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多"5·22"MS7.4级地震的同震地表破裂特征、成因及意义[J]. 地质力学学报, 27 (6): 899-912. doi: 10.12090/j.issn.1006-6616.2021.27.06.073
|
谷坤生, 郭明珠, 唐学武, 等, 2022. 地震作用下反倾岩质斜坡动力响应规律及频谱特征研究[J]. 地震工程学报, 44(1): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202201008.htm
|
国胜兵, 赵毅, 赵跃堂, 等, 2002. 地下结构在竖向和水平地震荷载作用下的动力分析[J]. 地下空间, 22(4): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200204007.htm
|
韩学川, 陶连金, 刘春晓, 等, 2020. 连体并行地铁车站结构地震响应分析[J]. 北京工业大学学报, 46(8): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202008010.htm
|
李杰, 李国强, 1992. 地震工程学导论[M]. 北京: 地震出版社.
|
李洋, 许成顺, 杜修力. 阪神地震中大开地铁车站和区间隧道破坏差异成因研究[J]. 防灾减灾工程学报, 2020, 40(3): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202003002.htm
|
刘蕾, 刘雪玲, 周金喜, 2018. 地裂缝与斜交地铁隧道动力响应数值分析[J]. 地质力学学报, 24 (2): 238-243. doi: 10.12090/j.issn.1006-6616.2018.24.02.025
|
刘立波, 李海波, 刘亚群, 2017. 高陡边坡地震动放大效应分析[J]. 长江科学院院报, 34(9): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201709021.htm
|
孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟. 地质力学学报, 27 (4): 614-627. doi: 10.12090/j.issn.1006-6616.2021.27.04.051
|
陶连金, 刘春晓, 边金, 等, 2017. 大跨度Y形柱地铁车站结构地震反应研究[J]. 力学学报, 49(1): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701007.htm
|
陶连金, 刘硕, 韩学川, 等, 2019. 临近地上高层结构的地铁车站地震响应[J]. 黑龙江科技大学学报, 29(5): 569-574. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201905009.htm
|
汪精河, 周晓军, 刘建国, 等, 2017. 地震波斜入射下山岭隧道横向动力响应数值分析[J]. 现代隧道技术, 54(3): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201703015.htm
|
熊良宵, 李天斌, 刘勇, 2007. 隧道地震响应数值模拟研究[J]. 地质力学学报, 13(3): 255-260. https://journal.geomech.ac.cn/article/id/dc5ec7bb-a8ac-4545-a770-dd46a379103f
|
许成顺, 许紫刚, 杜修力, 等, 2017. 地下结构抗震简化分析方法比较研究[J]. 地震工程与工程振动, 37(2). 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm
|
许有俊, 梁玮真, 刘忻梅, 等, 2017. 大断面矩形顶管隧道开挖面土体稳定性研究[J]. 现代隧道技术, 54(5): 70-77, 85.
|
杨雅琼, 王晓山, 万永革, 等, 2016. 由震源机制解推断唐山地震序列发震断层的分段特征[J]. 地震学报, 38(4): 632-643. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201604009.htm
|
杨益飞, 关群, 孙若晗, 等, 2017. 基于FLAC-3D数值模拟分析逆作法的深基坑变形[J]. 合肥工业大学学报(自然科学版), 40(4): 522-527. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201704018.htm
|
于仲洋, 张鸿儒, 邱滟佳, 等, 2021. 十字交叉型地铁车站结构的振动台试验研究[J]. 振动与冲击, 40(9): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109020.htm
|
张奎, 李伟华, 赵成刚, 2020. 地震波斜入射下水下地基场地的等效线性化分析方法及应用[J]. 振动与冲击, 39(22): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202022008.htm
|
张文彬, 周海祚, 郑刚, 等, 2021. 地铁车站与隧道连接处地震响应分析[J]. 地震工程学报, 2: 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202102024.htm
|
张迎宾, 柳静, 唐云波, 等, 2021. 考虑边坡地形效应的地震动力响应分析[J]. 地震工程学报, 43(1): 142-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202101018.htm
|
赵金, 吴红刚, 杨涛, 2019. 基于FLAC3D路桥不稳定边坡治理工程的动力响应研究[J]. 世界地震工程, 35(3): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201903021.htm
|
庄海洋, 程绍革, 陈国兴, 2008. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 29(1): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm
|
庄海洋, 王雪剑, 王瑞, 等, 2017. 土-地铁动力相互作用体系侧向变形特征研究[J]. 岩土工程学报, 39(10): 1761-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710003.htm
|