Citation: | GU Z K,YAO X,LI L J,et al.,2023. Applying stream power gradient in the investigation on spatial susceptibility of debris flow: A case of the Jinsha River Basin, China[J]. Journal of Geomechanics,29(1):87−98 doi: 10.12090/j.issn.1006-6616.2022022 |
BADOUX A, GRAF C, RHYNER J, et al. , 2009. A debris-flow alarm system for the Alpine Illgraben catchment: design and performance[J]. Natural Hazards, 49(3): 517-539. doi: 10.1007/s11069-008-9303-x
|
BAGNOLD R A, 1960. Sediment discharge and stream power: A preliminary announcement[R]. Reston: U. S. Geological Survey.
|
CHEN J, DAI F C, YAO X, 2008. Holocene debris-flow deposits and their implications on the climate in the upper Jinsha River valley, China[J]. Geomorphology, 93(3-4): 493-500. doi: 10.1016/j.geomorph.2007.03.011
|
CHENG H L, HUANG Y, ZHANG W J, et al. , 2022. Physical process-based runout modeling and hazard assessment of catastrophic debris flow using SPH incorporated with ArcGIS: a case study of the Hongchun gully[J]. CATENA, 212: 106052. doi: 10.1016/j.catena.2022.106052
|
China Academy of Geological Environment Monitoring, 2018. Distribution map of collapse, landslide and debris flow in China[M]. Beijing: Geology Press.
|
China Institute of Geological Environment Monitoring, 2018. Distribution map of collapses, landslides and debris flows in China[M]//. Beijing: Geological Publishing House. (in Chinese)
|
COE J A, KINNER D A, GODT J W, 2008. Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado[J]. Geomorphology, 96(3-4): 270-297. doi: 10.1016/j.geomorph.2007.03.017
|
CROWLEY J K, HUBBARD B E, MARS J C, 2003. Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data[J]. Remote Sensing of Environment, 87(2-3): 345-358. doi: 10.1016/j.rse.2003.08.003
|
DI B F, CHEN N S, CUI P, et al. , 2008. GIS-based risk analysis of debris flow: an application in Sichuan, southwest China[J]. International Journal of Sediment Research, 23(2): 138-148. doi: 10.1016/S1001-6279(08)60013-X
|
FINLAYSON D P, MONTGOMERY D R, 2003. Modeling large-scale fluvial erosion in geographic information systems[J]. Geomorphology, 53(1-2): 147-164. doi: 10.1016/S0169-555X(02)00351-3
|
GAO J M, SANG Y H, 2017. Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China[J]. International Journal of Disaster Risk Reduction, 25: 60-71. doi: 10.1016/j.ijdrr.2017.07.012
|
GAO Y, LI B, FENG Z, et al. , 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract)
|
GU Z K, SHI C X, PEN J, 2019. Evolutionary dynamics of the main-stem longitudinal profiles of ten kongdui basins within Inner Mongolia, China[J]. Journal of Geographical Sciences, 29(3): 417-431. doi: 10.1007/s11442-019-1607-0
|
HU G S, CHEN N S, LI J, et al. , 2014. Research on dynamic characteristics and development tendency of debris flow near field region in Baihetan Hydropower station, Jinshajiang River[J]. Research of Soil and Water Conservation, 21(2): 238-245. (in Chinese with English abstract)
|
HU G S, CHEN N S, TANOLI J I, et al. , 2017. Debris flow susceptibility analysis based on the combined impacts of antecedent earthquakes and droughts: a case study for cascade hydropower stations in the upper Yangtze River, China[J]. Journal of Mountain Science, 14(9): 1712-1727. doi: 10.1007/s11629-017-4375-1
|
HU G S, TIAN S F, CHEN N S, et al. , 2020. An effectiveness evaluation method for debris flow control engineering for cascading hydropower stations along the Jinsha River, China[J]. Engineering Geology, 266: 105472. doi: 10.1016/j.enggeo.2019.105472
|
HÜRLIMANN M, COVIELLO V, BEL C, et al. , 2019. Debris-flow monitoring and warning: review and examples[J]. Earth-Science Reviews, 199: 102981. doi: 10.1016/j.earscirev.2019.102981
|
IMAIZUMI F, MASUI T, YOKOTA Y, et al. , 2019. Initiation and runout characteristics of debris flow surges in Ohya landslide scar, Japan[J]. Geomorphology, 339: 58-69. doi: 10.1016/j.geomorph.2019.04.026
|
IPCC, 2014. Climate Change 2014: impacts, adaptation and vulnerability: Part A: global and sectoral aspects[R]. Cambridge: Cambridge University Press.
|
LEA D M, LEGLEITER C J, 2016. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone[J]. Geomorphology, 252: 66-79. doi: 10.1016/j.geomorph.2015.05.033
|
LI D F, LU X X, YANG X K, et al. , 2018. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: a case study of the Jinsha River[J]. Geomorphology, 322: 41-52. doi: 10.1016/j.geomorph.2018.08.038
|
LI W L, ZHU J, GONG Y H, et al. , 2022. An optimal selection method for debris flow scene symbols considering public cognition differences[J]. International Journal of Disaster Risk Reduction, 68: 102698. doi: 10.1016/j.ijdrr.2021.102698
|
LI Y C, CHEN J P, ZHOU F J, et al. , 2020. Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau[J]. Geomorphology, 368: 107351. doi: 10.1016/j.geomorph.2020.107351
|
LIU J J, LI Y, SU P C, et al. , 2009. Temporal variation of intermittent surges of debris flow[J]. Journal of Hydrology, 365(3-4): 322-328. doi: 10.1016/j.jhydrol.2008.12.005
|
LIU M, CHEN N S, ZHAO C Y, 2018. Influence of fault structure on debris flow in Qiaojia and Menggu section of the Jinsha River[J]. Journal of Natural Disasters, 27(3): 136-143. (in Chinese with English abstract)
|
LIU X W, XU J J, HAN Z M, 2016. Analysis on spatial-temporal distribution of precipitation in Jinsha River Basin and variation trend[J]. Yangtze River, 47(15): 36-44. (in Chinese with English abstract)
|
LONG K, ZHANG S J, WEI F Q, et al. , 2020. A hydrology-process based method for correlating debris flow density to rainfall parameters and its application on debris flow prediction[J]. Journal of Hydrology, 589: 125124. doi: 10.1016/j.jhydrol.2020.125124
|
LU C H, DONG X Y, TANG J L, et al. , 2019. Spatio-temporal trends and causes of variations in runoff and sediment load of the Jinsha River in China[J]. Journal of Mountain Science, 16(10): 2361-2378. doi: 10.1007/s11629-018-5330-6
|
LU J Y, YU G A, HUANG H Q, 2021. Research and prospect on formation mechanism of debris flows in high mountains under the influence of climate change[J]. Journal of Glaciology and Geocryology, 43(2): 555-567. (in Chinese with English abstract)
|
LYU L, XU M Z, WANG Z Y, et al. , 2022. A field investigation on debris flows in the incised Tongde sedimentary basin on the northeastern edge of the Tibetan Plateau[J]. CATENA, 208: 105727. doi: 10.1016/j.catena.2021.105727
|
MA L F, 2002. Geological atlas of China[M]. Beijing: Geology Press.
|
MCCOY S W, COE J A, KEAN J W, et al. , 2011. Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 1, in-situ measurements of flow dynamics, tracer particle movement and video imagery from the summer of 2009[J]. Italian Journal of Engineering Geology and Environment, 759-768,doi: 10.4408/IJEGE.2011-03.B-083.
|
Ministry of Land and Resources of the People's Republic of China, 2006. Specification of geological investigation for debris flow stabilization: DZ/T 0220-2006[S]. Beijing: Standards Press of China. (in Chinese)
|
MONTGOMERY D R, GRAN K B, 2001. Downstream variations in the width of bedrock channels[J]. Water Resources Research, 37(6): 1841-1846. doi: 10.1029/2000WR900393
|
NIKOLOPOULOS E I, CREMA S, MARCHI L, et al. , 2014. Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence[J]. Geomorphology, 221: 286-297. doi: 10.1016/j.geomorph.2014.06.015
|
OHMORI H, 1991. Change in the mathematical function type describing the longitudinal profile of a river through an evolutionary process[J]. The Journal of Geology, 99(1): 97-110. doi: 10.1086/629476
|
OHMORI H, SAITO K, 1993. Morphological development of longitudinal profiles of rivers in Japan and Taiwan[J]. Bulletin of the Department of Geography, University of Tokyo(25): 29-41.
|
OORTHUIS R, HÜRLIMANN M, ABANCÓ C, et al. , 2021. Monitoring of rainfall and soil moisture at the rebaixader catchment (Central Pyrenees)[J]. Environmental & Engineering Geoscience, 27(2): 221-229.
|
PÉREZ-PEñA J V, AZAñÓN J M, AZOR A, et al. , 2009. Spatial analysis of stream power using GIS: SLK anomaly maps[J]. Earth Surface Processes and Landforms, 34(1): 16-25. doi: 10.1002/esp.1684
|
QIN Y L, WU J L, ZHAN H Y, et al. , 2021. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan province, China[J]. Journal of Geomechanics, 27(3): 463-474. (in Chinese with English abstract)
|
QIU C C, SU L J, ZOU Q, et al. , 2022. A hybrid machine-learning model to map glacier-related debris flow susceptibility along Gyirong Zangbo watershed under the changing climate[J]. Science of the Total Environment, 818: 151752. doi: 10.1016/j.scitotenv.2021.151752
|
RãDOANE M, RãDOANE N, DUMITRIU D, 2003. Geomorphological evolution of longitudinal river profiles in the Carpathians[J]. Geomorphology, 50(4): 293-306. doi: 10.1016/S0169-555X(02)00194-0
|
SCHMIDT A H, DENN A R, HIDY A J, et al. , 2019. Human and natural controls on erosion in the Lower Jinsha River, China[J]. Journal of Asian Earth Sciences, 170: 351-359. doi: 10.1016/j.jseaes.2018.10.017
|
STRUTH L, GARCIA-CASTELLANOS D, VIAPLANA-MUZAS M, et al. , 2019. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: from endorheism to exorheism[J]. Geomorphology, 327: 554-571. doi: 10.1016/j.geomorph.2018.11.033
|
SUMMERFIELD M A, 1991. Global Geomorphology[M]. London: Routledge.
|
TSUNETAKA H, HOTTA N, IMAIZUMI F, et al. , 2021. Variation in rainfall patterns triggering debris flow in the initiation zone of the Ichino-sawa torrent, Ohya landslide, Japan[J]. Geomorphology, 375: 107529. doi: 10.1016/j.geomorph.2020.107529
|
WANG Q, KONG Y Y, ZHANG W, et al. , 2016. Regional debris flow susceptibility analysis based on principal component analysis and self-organizing map: a case study in Southwest China[J]. Arabian Journal of Geosciences, 9(18): 718. doi: 10.1007/s12517-016-2752-8
|
WANG Z B, WANG J Y, HE L L, et al. , 2021. Characteristics and evolution process of the ridge-groove sequence of the Jiulongtan glacial accumulation in Mengshan, Shandong: with the discussion on the difference of accumulation sequence of glacier and debris flow[J]. Journal of Geomechanics, 27(1): 105-116. (in Chinese with English abstract)
|
WEI L, HU K H, LIU S, 2021. Spatial distribution of debris flow-prone catchments in Hengduan mountainous area in southwestern China[J]. Arabian Journal of Geosciences, 14(23): 2650. doi: 10.1007/s12517-021-08818-1
|
WEN L, WEI P F, LI X M, et al. , 2020. Study on the river network, geomorphological features and tectonic activity in the Danjiangkou reservoir and its surrounding areas[J]. Journal of Geomechanics, 26(2): 252-262. (in Chinese with English abstract)
|
WU S E, CHEN J, ZHOU W, et al. , 2019. A modified Logit model for assessment and validation of debris-flow susceptibility[J]. Bulletin of Engineering Geology and the Environment, 78(6): 4421-4438. doi: 10.1007/s10064-018-1412-5
|
WU Y M, LAN H X, 2020. Debris flow analyst (DA): a debris flow model considering kinematic uncertainties and using a GIS platform[J]. Engineering Geology, 279: 105877. doi: 10.1016/j.enggeo.2020.105877
|
WU Y Y, FANG H W, HUANG L, et al. , 2020. Changing runoff due to temperature and precipitation variations in the dammed Jinsha River[J]. Journal of Hydrology, 582: 124500. doi: 10.1016/j.jhydrol.2019.124500
|
XIONG M Q, MENG X M, WANG S Y, et al. , 2016. Effectiveness of debris flow mitigation strategies in mountainous regions[J]. Progress in Physical Geography: Earth and Environment, 40(6): 768-793. doi: 10.1177/0309133316655304
|
YANG W M, WU S R, ZHANG Y S, et al. , 2006. Formation conditions of slope type mudflow in Ningshaan county, southern Shaanxi, and its inducing mechanism[J]. Journal of Geomechanics, 12(2): 219-227. (in Chinese with English abstract)
|
ZHANG C S, ZHANG Y C, ZHANG L H, 2004. Danger assessment of collapses, landslides and debris flows of geological hazards in China[J]. Journal of Geomechanics, 10(1): 27-32. (in Chinese with English abstract)
|
ZHANG N, FANG Z W, HAN X, et al. , 2018. The study on temporal and spatial distribution law and cause of debris flow disaster in China in recent years[J]. Earth Science Frontiers, 25(2): 299-308. (in Chines with English abstract)
|
ZHAO W H, GAO Y, 2011. Analysis on annual and decadal runoff variation characteristics of Jinsha River Basin[J]. Yangtze River, 42(6): 98-100. (in Chines with English abstract)
|
ZHAO Y, MENG X M, QI T J, et al. , 2020. AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China[J]. Geomorphology, 359: 107125. doi: 10.1016/j.geomorph.2020.107125
|
ZHAO Y M, DONG N P, LI Z S, et al. , 2021. Future precipitation, hydrology and hydropower generation in the Yalong River Basin: projections and analysis[J]. Journal of Hydrology, 602: 126738. doi: 10.1016/j.jhydrol.2021.126738
|
ZHOU W Q, QIU H J, WANG L Y, et al. , 2022. Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction[J]. CATENA, 213: 106199. doi: 10.1016/j.catena.2022.106199
|
ZHU L, HE S M, QIN H K, et al. , 2021. Analyzing the multi-hazard chain induced by a debris flow in Xiaojinchuan River, Sichuan, China[J]. Engineering Geology, 293: 106280. doi: 10.1016/j.enggeo.2021.106280
|
ZHUO G, JIAN J, BIANBA C R, 2011. Runoff of the Jinsha River: characteristics and its response to climate change[J]. Journal of Glaciology and Geocryology, 33(2): 405-415. (in Chinese with English abstract)
|
高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. doi: 10.3969/j.issn.1006-6616.2017.01.002
|
胡桂胜, 陈宁生, 李俊, 等, 2014. 金沙江白鹤滩水电站坝址近场区泥石流运动特征与发展趋势分析[J]. 水土保持研究, 21(2): 238-245. doi: 10.13869/j.cnki.rswc.2014.02.044
|
刘美, 陈宁生, 赵春瑶, 2018. 断裂构造对金沙江巧家至蒙姑段泥石流发育影响研究[J]. 自然灾害学报, 27(3): 136-143. doi: 10.13577/j.jnd.2018.0316
|
刘晓婉, 许继军, 韩志明, 2016. 金沙江流域降水空间分布特征及变化趋势分析[J]. 人民长江, 47(15): 36-44. doi: 10.16232/j.cnki.1001-4179.2016.15.008
|
鲁建莹, 余国安, 黄河清, 2021. 气候变化影响下高山区泥石流形成机制研究及展望[J]. 冰川冻土, 43(2): 555-567. doi: 10.7522/j.issn.1000-0240.2021.0043
|
秦宇龙, 吴建亮, 詹涵钰, 等, 2021. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报, 27(3): 463-474. doi: 10.12090/j.issn.1006-6616.2021.27.03.042
|
王照波, 王江月, 何乐龙, 等, 2021. 山东蒙山九龙潭冰川堆积“垄槽序列”的特征及演化过程研究: 兼论冰川、泥石流堆积序列的差异性[J]. 地质力学学报, 27(1): 105-116. doi: 10.12090/j.issn.1006-6616.2021.27.01.011
|
文力, 魏鹏飞, 李学敏, 等, 2020. 丹江口水库库区及周边地区河网形态、地貌特征及构造活动性意义[J]. 地质力学学报, 26(2): 252-262. doi: 10.12090/j.issn.1006-6616.2020.26.02.024
|
杨为民, 吴树仁, 张永双, 等, 2006. 陕西宁陕县城坡面型泥石流形成条件及其诱发机制[J]. 地质力学学报, 12(2): 219-227. doi: 10.3969/j.issn.1006-6616.2006.02.015
|
张春山, 张业成, 张立海, 2004. 中国崩塌、滑坡、泥石流灾害危险性评价[J]. 地质力学学报, 10(1): 27-32. doi: 10.3969/j.issn.1006-6616.2004.01.004
|
张楠, 方志伟, 韩笑, 等, 2018. 近年来我国泥石流灾害时空分布规律及成因分析[J]. 地学前缘, 25(2): 299-308. doi: 10.13745/j.esf.yx.2017-5-10
|
赵文焕, 高袁, 2011. 金沙江流域径流年代际变化特性分析[J]. 人民长江, 42(6): 98-100. doi: 10.3969/j.issn.1001-4179.2011.06.027
|
中国地质环境监测院, 2018. 中国崩塌滑坡泥石流分布图[M]. 北京: 地质出版社.
|
中华人民共和国国土资源部, 2006. 泥石流灾害防治工程勘查规范: DZ/T 0220-2006[S]. 北京: 中国标准出版社.
|
卓嘎, 建军, 边巴次仁, 2011. 1960-2004年金沙江径流量特征及其对气候变化的响应[J]. 冰川冻土, 33(2): 405-415.
|