Citation: | LI Yihao, DU Xingxing, LI Tianxiu, 2022. Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Tibetan Plateau, and their formation mechanism. Journal of Geomechanics, 28 (3): 353-366. DOI: 10.12090/j.issn.1006-6616.2021151 |
AI S, ZHANG B, FAN C, et al., 2017. Surface tracks and slip rate of the fault along the southern margin of the Wuwei basin in the late Quaternary[J]. Seismology and Geology, 39(2): 408-422. (in Chinese with English abstract)
|
AN Z S, KUTZBACH J E, PRELL W L, et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times[J]. Nature, 411(6833): 62-66. doi: 10.1038/35075035
|
BALLARINI M, WALLINGA J, MURRAY A S, et al., 2003. Optical dating of young coastal dunes on a decadal time scale[J]. Quaternary Science Reviews, 22(10-13): 1011-1017. doi: 10.1016/S0277-3791(03)00043-X
|
BOVET P M, RITTS B D, GEHRELS G, et al., 2009. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China[J]. American Journal of Science, 309(4): 290-329. doi: 10.2475/00.4009.02
|
Bureau of Geology and Mineral Resources of Gansu Province, 1997. Stratigraphy(lithostratic) of Gansu province[M]. Wuhan: China University of Geosciences Press. (in Chinese)
|
CARDELLO G L, TESEI T, 2013. Transtensive faulting in carbonates at different crustal levels: examples from SW Helvetics and central Apennines[J]. Rendiconti Online Societa Geologica Italiana, 29: 20-23.
|
CHAMPAGNAC J D, YUAN D Y, GE W P, et al., 2010. Slip rate at the north-eastern front of the Qilian Shan, China[J]. Terra Nova, 22(3): 180-187. doi: 10.1111/j.1365-3121.2010.00932.x
|
CHEN B L, LIU J M, LIU J S, et al., 2006. Study on the activity and chronology of the Gaotai Railway Station fault during Holocene Epoch[J]. Acta Geologica Sinica, 80(4): 497-507. (in Chinese with English abstract)
|
CHEN B L, WANG C Y, CUI L L, et al., 2008. Developing model of thrust fault system in western part of Northern Qilian Mountains margin-Hexi Corridor Basin during late Quaternary[J]. Earth Science Frontiers, 15(6): 260-277. (in Chinese with English abstract)
|
CHEN B L, LIU J S, 2009. Geodetic deformation in Northern Qilianshan margin and Hexi Corridor area, Northwest China and its relation to the earthquake[J]. Geological Bulletin of China, 28(10): 1439-1447. (in Chinese with English abstract)
|
CHEN W B, 2003. Principal features of tectonic deformation and their generation mechanism in the Hexi Corridor and its adjacent regions since late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
|
CUI Z H, TANG L J, 2007. A genetic model of normal fault under compressive tectonic setting[J]. Xinjiang Petroleum Geology, 28(2): 254-256. (in Chinese with English abstract)
|
CUNNINGHAM D, ZHANG J, LI Y F, 2016. Late Cenozoic transpressional mountain building directly north of the Altyn Tagh fault in the Sanweishan and Nanjieshan, north Tibetan foreland, China[J]. Tectonophysics, 687: 111-128. doi: 10.1016/j.tecto.2016.09.010
|
DENG Q D, ZHANG W Q, ZHANG P Z, et al., 1989. Haiyuan strike-slip fault zone and its compressional structures of the end[J]. Seismology and Geology, 11(1): 1-14. (in Chinese with English abstract)
|
GE X H, LIU J L, 1999. Formation and tectonic background of the Northern Qilian orogenic belt[J]. Earth Science Frontiers, 6(4): 223-230. (in Chinese with English abstract)
|
GUO H J, YANG L R, ZHU X H, et al., 2016. River terrace and Quaternary tectonic uplift in the Qilian Mountain[J]. Geological Bulletin of China, 35(12): 2033-2044. (in Chinese with English abstract)
|
HE G Y, YANG S F, CHEN H L, et al., 2004. On faults of western Hexi corridor and its vicinity, Northwestern China Ⅰ: Thrust and strike-slip faults of late Cenozoic[J]. Acta Seismologica Sinica, 26(6): 601-608. (in Chinese with English abstract)
|
HE X, DU X X, LIU J, et al., 2022. Sedimentary process and tectonic significance of Wuwei basin during the Quaternary[J]. Seismology and Geology, 44(1): 76-97. (in Chinese with English abstract)
|
HOU K M, ZHENG Q D, LIU B C, 1999. Research on tectonic environment and seismogenic mechanism of 1927 Gulang great earthquake[J]. Earthquake Research in China, 15(4): 339-348. (in Chinese with English abstract)
|
HU X F, 2010. The research on temporal and spatial distributions of erosionrates and tectonic deformation in the Northern Qilianshan[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
|
JIANG Z S, MA Z J, ZHANG X, et al., 2001. Analysis of recent horizontal crustal strain field and tectonic deformation in the northeast margin of Qinghai-Tibet block[J]. Seismology and Geology, 23(3): 337-346. (in Chinese with English abstract)
|
JIN S, ZHANG L T, JIN Y J, et al., 2012. Crustal electrical structure along the Hezuo-Dajing profile across the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 55(12): 3979-3990. (in Chinese with English abstract)
|
LAI Z P, OU X J, 2013. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geography, 32(5): 683-693. (in Chinese with English abstract)
|
LI F Q, WANG C S, ZHU L D, et al., 2002. The basin-range coupling under the regional compressional regimes: examples from the Hexi Corridor Basin and North Qilian Mountains[J]. Sedimentary Geology and Tethyan Geology, 22(4): 17-25. (in Chinese with English abstract)
|
LI J Y, ZHENG W J, WANG W T, et al., 2020. The northward growth of the northeastern Tibetan Plateau in late Cenozoic: Implications from apatite(U-Th)/He ages of Longshoushan[J]. Seismology and Geology, 42(2): 472-491. (in Chinese with English abstract)
|
LI W L, CHENG H H, ZHANG H, et al., 2019. Three-dimensional numerical modeling of the tectonic evolution of the serial basins in the Hexi Corridor in Northwest China[J]. Journal of University of Chinese Academy of Sciences, 36(2): 196-207. (in Chinese with English abstract)
|
LI X, WAN Y G, CUI H W, et al., 2016. Tectonic stress field of 2016, MS6.4 Menyuan, Qinghai earthquake[J]. North China Earthquake Sciences, 34(2): 36-41. (in Chinese with English abstract)
|
LI Y L, YANG J C, LI B J, et al., 1997. On the tectonic landform of the Yumu Mountain, Hexi Corridor, Gansu Province[J]. Journal of Geomechanics, 3(4): 20-26. (in Chinese with English abstract)
|
LIU B Y, ZENG W H, YUAN D Y, et al., 2014. Fault parameters and slip properties of the 1954 northern Tengger Desert M7.0 earthquake[J]. China Earthquake Engineering Journal, 36(3): 622-627. (in Chinese with English abstract)
|
LIU B Y, ZENG W H, YUAN D Y, et al., 2015. The research on fault parameter and sliding behavior of the 1927 Gulang M8.0 earthquake[J]. Seismology and Geology, 37(3): 818-828. (in Chinese with English abstract)
|
LIU H C, DAI H G, LI L H, et al., 2000. A preliminary study on the 1954 Minqin MS7.0 earthquake in Gansu province[J]. Northwestern Seismological Journal, 22(3): 232-235. (in Chinese with English abstract)
|
LIU H F, LIANG H S, CAI L G, et al., 1994. Evolution and structural style of Tianshan and adjacent basins, Northwestern China[J]. Earth Science, 19(6): 727-741. (in Chinese with English abstract)
|
LIU X W, YUAN D Y, SU Q, et al., 2020. Late Quaternary tectonic activity and slip rates of active faults in the Western Hexi Corridor, NW China[J]. Journal of Earth Science, 31(5): 968-977. doi: 10.1007/s12583-020-1287-9
|
MURRAY A S, WINTLE A G, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 32(1): 57-73. doi: 10.1016/S1350-4487(99)00253-X
|
MURRAY A S, WINTLE A G, 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability[J]. Radiation Measurements, 37(4-5): 377-381. doi: 10.1016/S1350-4487(03)00053-2
|
PEI H L, 2017. Manifestation of new tectonic activity on the proluvial landform in the northern Yumu Mountain marginal fault[D]. Beijing: China University of Geosciences(Beijing). (in Chinese with English abstract)
|
SHI W, LIU Y, LIU Y, et al., 2013. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 20(4): 1-17. (in Chinese with English abstract)
|
SHI Y J, ZHANG C W, CUN S C, 1995. Discovery of nappe structure in Longshou Mountain and its geological significance[J]. Chinese Science Bulletin, 40(9): 812-813. (in Chinese) doi: 10.1360/csb1995-40-9-812
|
SONG C H, 2006. Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan Plateau[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
|
TAN L H, YANG J C, DUAN F J, 1998. Stages of Cenozoic tectonic movement in Hexi Corridor, Gansu province[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 34(4): 523-532. (in Chinese with English abstract)
|
THORNTON J M, MARIETHOZ G, BRUNNER P, 2018. A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research[J]. Scientific Data, 5(1): 180238. doi: 10.1038/sdata.2018.238
|
WALDRON J W F, 2005. Extensional fault arrays in strike-slip and transtension[J]. Journal of Structural Geology, 27(1): 23-34. doi: 10.1016/j.jsg.2004.06.015
|
WAN J L, ZHENG W J, ZHENG D W, et al., 2010. Low closure temperature thermochronometry study on the late Cenozoic tectonic active of Northern Qilianshan and its implication for dynamics of Tibetan Plateau growth[J]. Geochimica, 39(5): 439-446. (in Chinese with English abstract)
|
WANG C S, DAI J G, LIU Z F, et al., 2009. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: a review[J]. Earth Science Frontiers, 16(3): 1-30. (in Chinese with English abstract)
|
WANG J M, ZHANG J J, LIU K, et al., 2016a. Spatial and temporal evolution of tectonometamorphic discontinuities in the central Himalaya: constraints from P-T paths and geochronology[J]. Tectonophysics, 679: 41-60. doi: 10.1016/j.tecto.2016.04.035
|
WANG W T, KIRBY E, ZHANG P Z, et al., 2013. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. GSA Bulletin, 125(3-4): 377-400. doi: 10.1130/B30611.1
|
WANG W T, ZHANG P Z, ZHENG D W, et al., 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 21(4): 266-274. (in Chinese with English abstract)
|
WANG W T, ZHANG P Z, PANG J Z, et al., 2016b. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: a sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2235-2257. doi: 10.1002/2015JB012689
|
WANG W T, ZHENG D W, LI C P, et al., 2020. Cenozoic exhumation of the Qilian Shan in the Northeastern Tibetan Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 39(4): e2019TC005705.
|
WANG X L, LI X N, LU Y C, 2004. Red LED and its application to luminescence lighting[J]. Marine Geology & Quaternary Geology, 24(1): 133-137. (in Chinese with English abstract)
|
XIAO K Z, TONG H M, 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166. (in Chinese with English abstract)
|
XIAO Q B, ZHANG J, WANG J J, et al., 2012. Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic implications[J]. Physics of the Earth and Planetary Interiors, 200-201: 92-104. doi: 10.1016/j.pepi.2012.04.008
|
XIAO Q B, ZHANG J, ZHAO G Z, et al., 2013a. Electrical resistivity structures northeast of the Eastern Kunlun Fault in the Northeastern Tibet: tectonic implications[J]. Tectonophysics, 601: 125-138. doi: 10.1016/j.tecto.2013.05.003
|
XIAO Q B, SHAO G H, JINGL Z, et al., 2015. Eastern termination of the Altyn Tagh Fault, Western China: constraints from a magnetotelluric survey[J]. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. doi: 10.1002/2014JB011363
|
XIAO W J, WINDLEY B F, ALLEN M B, et al., 2013b. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 23(4): 1316-1341. doi: 10.1016/j.gr.2012.01.012
|
YAN C F, YUAN J Y, 2011. Sedimentary environment and hydrocarbon potential of Carboniferous in Wuwei Basin[J]. Natural Gas Geoscience, 22(2): 267-274. (in Chinese with English abstract)
|
YAN D P, SUN M, GONG L X, et al., 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 26(5): 615-633. (in Chinese with English abstract)
|
YAN M D, FANG X M, VAN DER VOO R, et al., 2013. Neogene rotations in the Jiuquan Basin, Hexi Corridor, China[J]. Geological Society, London, Special Publications, 373(1): 173-189. doi: 10.1144/SP373.6
|
YANG J C, TAN L H, LI Y L, et al., 1998. River terraces and neotectonic evolution at north margin of the Qilianshan mountains[J]. Quaternary Sciences(3): 229-237. (in Chinese with English abstract)
|
YU J X, ZHENG W J, KIRBY E, et al., 2016. Kinematics of late Quaternary slip along the Yabrai fault: implications for Cenozoic tectonics across the Gobi Alashan block, China[J]. Lithosphere, 8(3): 199-218. doi: 10.1130/L509.1
|
YU J X, ZHENG W J, ZHANG P Z, et al., 2017. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China[J]. Tectonophysics, 721: 28-44. doi: 10.1016/j.tecto.2017.09.014
|
YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 32(5): 1358-1370. doi: 10.1002/tect.20081
|
YUN L, ZHANG J, WANG J, et al., 2021. Discovery of active faults in the southern Beishan area, NW China: implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195-207. (in Chinese with English abstract)
|
ZHANG B H, ZHANG J, ZHAO H, et al., 2021a. Kinematics and geochronology of Late Paleozoic-Early Mesozoic ductile deformation in the Alxa Block, NW China: new constraints on the evolution of the Central Asian Orogenic belt[J]. Lithosphere, 2021(1): 3365581. doi: 10.2113/2021/3365581
|
ZHANG H P, ZHANG P Z, PRUSH V, et al., 2017. Tectonic geomorphology of the Qilian Shan in the northeastern Tibetan Plateau: insights into the plateau formation processes[J]. Tectonophysics, 706-707: 103-115. doi: 10.1016/j.tecto.2017.04.016
|
ZHANG J, MA Z J, XIAO W X, et al., 2006. Geological evidences of the deformation in Central-Southern Ningxia in the Miocene and its significance[J]. Acta Geologica Sinica, 80(11): 1650-1659. (in Chinese with English abstract)
|
ZHANG J, LI J Y, LI Y F, et al., 2007. The cenozoic deformation of the Alxa block in central Asia-Question on the northeastern extension of the Altyn Tagh Fault in Cenozoic time[J]. Acta Geologica Sinica, 81(11): 1481-1497. (in Chinese with English abstract)
|
ZHANG J, CUNNINGHAM D, CHENG H Y, 2010. Sedimentary characteristics of Cenozoic strata in central-southern Ningxia, NW China: implications for the evolution of the NE Qinghai-Tibetan plateau[J]. Journal of Asian Earth Sciences, 39(6): 740-759. doi: 10.1016/j.jseaes.2010.05.008
|
ZHANG J, CUNNINGHAM D, YUN L, et al., 2021b. Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China[J]. Journal of Asian Earth Sciences, 205: 104597. doi: 10.1016/j.jseaes.2020.104597
|
ZHANG K Q, WU Z H, LV T Y, et al., 2015. Review and progress of OSL dating[J]. Geological Bulletin of China, 34(1): 183-203. (in Chinese with English abstract)
|
ZHANG P Z, ZHENG D W, YIN G M, et al., 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese with English abstract)
|
ZHANG P Z, ZHANG H P, ZHENG W J, et al., 2014. Cenozoic tectonic evolution of Continental eastern Asia[J]. Seismology and Geology, 36(3): 574-585. (in Chinese with English abstract)
|
ZHANG Y Q, LI H L, 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion-related orogenic system[J]. Geology in China, 43(6): 1829-1852. (in Chinese with English abstract)
|
ZHAO H, ZHANG J, LI Y F, et al., 2019. Characteristics of Cenozoic faults in Langshan area, Inner Mongolia: constraint on the development of normal faults[J]. Geology in China, 46(6): 1433-1453. (in Chinese with English abstract)
|
ZHAO L Q, ZHAN Y, WANG Q L, et al., 2018. Deep electrical structure beneath the 1954 MS7.0 Minqin, Gansu earthquake and its seismotectonic environment[J]. Seismology and Geology, 40(3): 552-565. (in Chinese with English abstract)
|
ZHAO Z X, 2021. Late Cenozoic sedimentary, tectonic and geomorphic evolution in the northeastern Qilian Shan[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
|
ZHENG D W, CLARK M K, ZHANG P Z, et al., 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 6(6): 937-941. doi: 10.1130/GES00523.1
|
ZHENG W J, YUAN D Y, HE W G, 2004. Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan Mountains[J]. Seismology and Geology, 26(4): 645-657. (in Chinese with English abstract)
|
ZHENG W J, HE W G, ZHAO G K, et al., 2005. Discussion on the causative structure and mechanism of the 2003 Minle-Shandan, Gansu M6.1, 5.8 earthquakes[J]. Journal of Seismological Research, 28(2): 133-140. (in Chinese with English abstract)
|
ZHENG W J, 2009. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
|
ZHENG W J, ZHANG P Z, HE W G, et al., 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584: 267-280. doi: 10.1016/j.tecto.2012.01.006
|
ZHENG W T, YANG J C, DUAN F J, 2000. A study on the relationbetween deformation of river terraces and neotectonic activity for the Wuwei Basin[J]. Seismology and Geology, 22(3): 318-328. (in Chinese with English abstract)
|
ZOU X B, 2018. Study on tectonic deformation and seismogenic mechanism of the Minle-Yongchang active fault in the Hexi Corridor[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract)
|
艾晟, 张波, 樊春, 等, 2017. 武威盆地南缘断裂晚第四纪活动地表形迹与活动速率[J]. 地震地质, 39(2): 408-422. doi: 10.3969/j.issn.0253-4967.2017.02.010
|
陈柏林, 刘建民, 刘建生, 等, 2006. 高台车站断裂全新世活动特征[J]. 地质学报, 80(4): 497-507. doi: 10.3321/j.issn:0001-5717.2006.04.004
|
陈柏林, 刘建生, 2009. 祁连山北缘-河西走廊地区大地形变与地震的关系[J]. 地质通报, 28(10): 1439-1447. doi: 10.3969/j.issn.1671-2552.2009.10.010
|
陈柏林, 王春宇, 崔玲玲, 等, 2008. 祁连山北缘-河西走廊西段晚新生代逆冲推覆断裂发育模式[J]. 地学前缘, 15(6): 260-277. doi: 10.3321/j.issn:1005-2321.2008.06.033
|
陈文彬, 2003. 河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D]. 北京: 中国地震局地质研究所.
|
崔泽宏, 汤良杰, 2007. 一种挤压构造背景下正断层的成因模式[J]. 新疆石油地质, 28(2): 254-256. doi: 10.3969/j.issn.1001-3873.2007.02.035
|
邓起东, 张维岐, 张培震, 等, 1989. 海原走滑断裂带及其尾端挤压构造[J]. 地震地质, 11(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198901000.htm
|
甘肃省地质矿产局, 1997. 甘肃省岩石地层[M]. 武汉: 中国地质大学出版社.
|
葛肖虹, 刘俊来, 1999. 北祁连造山带的形成与背景[J]. 地学前缘, 6(4): 223-230. doi: 10.3321/j.issn:1005-2321.1999.04.004
|
郭怀军, 杨利荣, 朱小辉, 等, 2016. 祁连山地区河流阶地与第四纪构造隆升[J]. 地质通报, 35(12): 2033-2044. doi: 10.3969/j.issn.1671-2552.2016.12.011
|
何光玉, 杨树锋, 陈汉林, 等, 2004. 河西走廊西段及邻区主要断裂(一): 晚新生代逆断层与走滑断层的地震剖面解释[J]. 地震学报, 26(6): 601-608. doi: 10.3321/j.issn:0253-3782.2004.06.005
|
何翔, 杜星星, 刘健, 等, 2022. 武威盆地第四纪沉积过程及其构造意义[J]. 地震地质, 44(1): 76-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202201006.htm
|
侯康明, 邓起东, 刘百篪, 1999. 对古浪8级大震孕育和发生的构造环境及发震模型的讨论[J]. 中国地震, 15(4): 339-348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199904005.htm
|
胡小飞, 2010. 祁连山北部侵蚀速率的时空分布与构造抬升变形研究[D]. 兰州: 兰州大学.
|
江在森, 马宗晋, 张希, 等, 2001. 青藏块体东北缘水平应变场与构造变形分析[J]. 地震地质, 23(3): 337-346. doi: 10.3969/j.issn.0253-4967.2001.03.001
|
金胜, 张乐天, 金永吉, 等, 2012. 青藏高原东北缘合作-大井剖面地壳电性结构研究[J]. 地球物理学报, 55(12): 3979-3990. doi: 10.6038/j.issn.0001-5733.2012.12.010
|
赖忠平, 欧先交, 2013. 光释光测年基本流程[J]. 地理科学进展, 32(5): 683-693. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201305003.htm
|
李奋其, 王成善, 朱利东, 等, 2002. 区域挤压体制下盆-山耦合关系探讨: 以河西走廊和北祁连山为例[J]. 沉积与特提斯地质, 22(4): 17-25. doi: 10.3969/j.issn.1009-3850.2002.04.003
|
李佳昱, 郑文俊, 王伟涛, 等, 2020. 青藏高原东北部龙首山晚新生代剥露历史: 来自磷灰石(U-Th)/He的证据[J]. 地震地质, 42(2): 472-491. doi: 10.3969/j.issn.0253-4967.2020.02.014
|
李蔚琳, 程惠红, 张怀, 等, 2019. 河西走廊系列盆地构造演化的三维数值模拟[J]. 中国科学院大学学报, 36(2): 196-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201902004.htm
|
李祥, 万永革, 崔华伟, 等, 2016. 2016年1月21日青海门源Ms6.4地震构造应力场[J]. 华北地震科学, 34(2): 36-41. doi: 10.3969/j.issn.1003-1375.2016.02.007
|
李有利, 杨景春, 李保俊, 等, 1997. 河西走廊榆木山边缘断层构造地貌研究[J]. 地质力学学报, 3(4): 20-26. https://journal.geomech.ac.cn/article/id/d2220b58-18cb-4d66-bf0b-63651da1663d
|
刘白云, 曾文浩, 袁道阳, 等, 2014. 1954年腾格里沙漠北7级地震断层面参数和滑动性质研究[J]. 地震工程学报, 36(3): 622-627. doi: 10.3969/j.issn.1000-0844.2014.03.0622
|
刘白云, 曾文浩, 袁道阳, 等, 2015. 1927年古浪8级大地震断层面参数和滑动性质[J]. 地震地质, 37(3): 818-828. doi: 10.3969/j.issn.0253-4967.2015.03.012
|
刘洪春, 戴华光, 李龙海, 等, 2000. 对1954年民勤7级地震的初步研究[J]. 西北地震学报, 22(3): 232-235. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200003003.htm
|
刘和甫, 梁慧社, 蔡立国, 等, 1994. 天山两侧前陆冲断系构造样式与前陆盆地演化[J]. 地球科学, 19(6): 727-741. doi: 10.3321/j.issn:1000-2383.1994.06.005
|
裴红连, 2017. 榆木山北缘断裂第四纪新构造活动在洪积地貌上的表现[D]. 北京: 中国地质大学(北京).
|
施炜, 刘源, 刘洋, 等, 2013. 青藏高原东北缘海原断裂带新生代构造演化[J]. 地学前缘, 20(4): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304003.htm
|
石应骏, 张朝文, 寸树苍, 1995. 龙首山推覆构造的发现及其地质意义[J]. 科学通报, 40(9): 812-813. doi: 10.3321/j.issn:0023-074X.1995.09.014
|
宋春晖, 2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程[D]. 兰州: 兰州大学.
|
谭利华, 杨景春, 段烽军, 1998. 河西走廊新生代构造运动的阶段划分[J]. 北京大学学报(自然科学版), 34(4): 523-532. doi: 10.3321/j.issn:0479-8023.1998.04.017
|
万景林, 郑文俊, 郑德文, 等, 2010. 祁连山北缘晚新生代构造活动的低温热年代学证据[J]. 地球化学, 39(5): 439-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201005004.htm
|
王成善, 戴紧根, 刘志飞, 等, 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展[J]. 地学前缘, 16(3): 1-30. doi: 10.3321/j.issn:1005-2321.2009.03.001
|
王伟涛, 张培震, 郑德文, 等, 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 21(4): 266-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404034.htm
|
王旭龙, 李晓妮, 卢演俦, 2004. 红光固体二极管点阵在释光测年中的光照应用[J]. 海洋地质与第四纪地质, 24(1): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401019.htm
|
肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166. doi: 10.12090/j.issn.1006-6616.2020.26.02.015
|
阎存凤, 袁剑英, 2011. 武威盆地石炭系沉积环境及含油气远景[J]. 天然气地球科学, 22(2): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201102011.htm
|
颜丹平, 孙铭, 巩凌霄, 等, 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615-633. doi: 10.12090/j.issn.1006-6616.2020.26.05.054
|
杨景春, 谭利华, 李有利, 等, 1998. 祁连山北麓河流阶地与新构造演化[J]. 第四纪研究(3): 229-237. doi: 10.3321/j.issn:1001-7410.1998.03.006
|
云龙, 张进, 王驹, 等, 2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 27(2): 195-207. doi: 10.12090/j.issn.1006-6616.2021.27.02.019
|
张进, 马宗晋, 肖文霞, 等, 2006. 宁夏中南部中新世构造活动的地质证据及其意义[J]. 地质学报, 80(11): 1650-1659. doi: 10.3321/j.issn:0001-5717.2006.11.002
|
张进, 李锦轶, 李彦峰, 等, 2007. 阿拉善地块新生代构造作用: 兼论阿尔金断裂新生代东向延伸问题[J]. 地质学报, 81(11): 1481-1497. doi: 10.3321/j.issn:0001-5717.2007.11.003
|
张克旗, 吴中海, 吕同艳, 等, 2015. 光释光测年法: 综述及进展[J]. 地质通报, 34(1): 183-203. doi: 10.3969/j.issn.1671-2552.2015.01.015
|
张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002
|
张培震, 张会平, 郑文俊, 等, 2014. 东亚大陆新生代构造演化[J]. 地震地质, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003
|
张岳桥, 李海龙, 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系[J]. 中国地质, 43(6): 1829-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201606002.htm
|
赵衡, 张进, 李岩峰, 等, 2019. 内蒙古狼山地区新生代断层活动特征: 对正断层生长的限定[J]. 中国地质, 46(6): 1433-1453. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201906014.htm
|
赵凌强, 詹艳, 王庆良, 等, 2018. 1954年甘肃民勤7级地震区深部电性结构特征及地震构造环境研究[J]. 地震地质, 40(3): 552-565. doi: 10.3969/j.issn.0253-4967.2018.03.004
|
赵子贤, 2021. 祁连山东北缘晚新生代沉积-构造-地貌演化过程[D]. 北京: 中国地质科学院.
|
郑文俊, 袁道阳, 何文贵, 2004. 祁连山东段天桥沟-黄羊川断裂古地震活动习性研究[J]. 地震地质, 26(4): 645-657. doi: 10.3969/j.issn.0253-4967.2004.04.011
|
郑文俊, 何文贵, 赵广坤, 等, 2005. 2003年甘肃民乐-山丹6.1, 5.8级地震发震构造及发震机制探讨[J]. 地震研究, 28(2): 133-140. doi: 10.3969/j.issn.1000-0666.2005.02.006
|
郑文俊, 2009. 河西走廊及其邻区活动构造图像及构造变形模式[D]. 北京: 中国地震局地质研究所.
|
郑文涛, 杨景春, 段锋军, 2000. 武威盆地晚更新世河流阶地变形与新构造活动[J]. 地震地质, 22(3): 318-328. doi: 10.3969/j.issn.0253-4967.2000.03.012
|
邹小波, 2018. 河西走廊内部民乐-永昌断裂构造变形特征与发震机制研究[D]. 兰州: 中国地震局兰州地震研究所.
|