Volume 28 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
LI Huayong, ZHAO Nan, YANG Yiping, et al., 2022. Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction. Journal of Geomechanics, 28 (2): 226-236. DOI: 10.12090/j.issn.1006-6616.2021112
Citation: LI Huayong, ZHAO Nan, YANG Yiping, et al., 2022. Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction. Journal of Geomechanics, 28 (2): 226-236. DOI: 10.12090/j.issn.1006-6616.2021112

Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction

doi: 10.12090/j.issn.1006-6616.2021112
Funds:

the National Natural Science Foundation of China 41807447

the National Natural Science Foundation of China 41906057

the National Natural Science Foundation of China 42171217

the Natural Science Foundation of Henan Province 212300410101

the Key Scientific Research Projects of Colleges and Universities in Henan Province 20B170001

the Key Scientific Research Projects of Colleges and Universities in Henan Province 21A170002

the Key Scientific and Technological Project of Anyang 2021C01NY035

More Information
  • Received: 2021-08-26
  • Revised: 2021-12-03
  • Sedimentary characterization of modern floods helps to reconstruct the hydrologic flood process and spot the source area of sediment erosion. It is of great referential value both to the design of flood-control works and the identification of paleo-flood layers. In mid-August 2018, two typhoons battered the Dan River Basin in northern Shandong, leading to flooding disasters. Based on the research of the flooded area, the boreholeDH1 of 21 cm long was obtained from the downstream with well-preserved flood sediments. The analyses on its grain size, loss on ignition, magnetic susceptibility, and sporo-pollen features, show that the sedimentary cycle under flooding is characterized by fine grains in the lower part and coarse grains in the upper part. Modern soil is developed at a depth of 11.5~21.0 cm; a typical flood silt layer is developed at a depth of 0~9.0 cm, which is relatively coarse in grain size, dominated by medium-to-coarse-grained silt, and with a sand content of 14.7% on average; and a fine-grained sedimentary layer is developed at a depth of 9.0~11.5 cm during the initial period of flooding. According to the various traits of sensitive component contents, the flooding process can be divided into two stages: the relatively weak hydrodynamic force at the earlier stage and the significantly accelerated flow velocity at the later stage; The former is characterized by severe vicious flow and deposition of clays under the combined action of natural conditions and human activities, which can be further divided into two sub-sections of the rising water level and the significant acceleration of flow velocity; The latter result in typical silty deposits from flooding. Carbonate, organic matter content, and sporo-pollen abundance all are negatively correlated with grain size, indicating that the weak hydrodynamic environment is conducive to its deposition and accumulation. The sporo-pollen assemblage of the surface soil can better indicate the distribution of vegetation in the study area, and the sporo-pollen assemblage of the silty layer from flooding can better reflect the overall condition of vegetation in the basin, which has revealed that the river flood is much greater than wind in transporting sporo-pollen. In addition, the sporo-pollen assemblage features in the clayey layer from flooding are in good agreement with the distribution of vegetation in the study area, and obviously different from those of the silty layer from flooding, according to which it is speculated that the primary cause of the water level rise during the initial period of flooding lies in precipitation incorporating with local surface runoff; therefore, the sediment and sporo-pollen are derived from within the study area, and meanwhile the influx of tourists in the later period has brought in more sporo-pollen from mountainous vegetation. The sporo-pollen deposition records from borehole DH1 show that the sporo-pollen assemblage features are in good response to the propagation process and hydrodynamic force, and have the potential to identify the source area of sediment erosion. The magnetic susceptibility mainly reflects the intensity of pedogenesis, and its value for both the clayey and silty layers from flooding is steadily low, significantly lower than that for the soil contact layer. Therefore, it can be used as a reliable indicator for identifying flood deposits, but the geospatial scope of their use needs to be further discussed.

     

  • loading
  • AN Z S, PORTER S, KUKLA G, et al., 1990. Magnetic susceptibility evidence of season winds changes on Loess Plateau during the late 130 kyr[J]. Science Bulletin, 35(7): 529-532. (in Chinese) https://www.sciencedirect.com/science/article/pii/003358949190015W
    BORMANN H, PINTER N, ELFERT S, 2011. Hydrological signatures of flood trends on German rivers: Flood frequencies, flood heights and specific stages[J]. Journal of Hydrology, 404(1-2): 50-66. doi: 10.1016/j.jhydrol.2011.04.019
    BROWN S L, BIERMAN P R, LINI A, et al., 2000. 10000 yr record of extreme hydrologic events[J]. Geology, 28(4): 335-338. doi: 10.1130/0091-7613(2000)28<335:YROEHE>2.0.CO;2
    CARLING P A, BORHORQUEZ P, FAN X M, 2020. Hydraulic control on the development of megaflood runup deposits[J]. Geomorphology, 361: 107203. doi: 10.1016/j.geomorph.2020.107203
    CHANG J, HUI Z C, GENG H P, et al., 2017. Modern pollen transportation process in the middle reach of the Heihe River[J]. Scientia Geographica Sinica, 37(12): 1925-1932. (in Chinese with English abstract)
    CHEN Q, LIU D Y, CHEN Y J, et al., 2013. Comparative analysis of grade-standard deviation method and factors analysis method for environmental sensitive factor analysis[J]. Earth and Environment, 41(3): 319-325. (in Chinese with English abstract) https://www.researchgate.net/publication/268979148_Comparative_Analysis_of_Grade-standard_Deviation_Method_and_Factors_Analysis_Method_for_Environmental_Sensitive_Factor_Analysis_in_Chinese_with_English_abstract
    DE NIEL J, DEMARÉE G, WILLEMS P, 2017. Weather typing-based flood frequency analysis verified for exceptional historical events of past 500 years along the Meuse River[J]. Water Resources Research, 53(10): 8459-8474. doi: 10.1002/2017WR020803
    DONG G H, ZHANG F Y, LIU F W, et al., 2018. Multiple evidences indicate no relationship between prehistoric disasters in Lajia site and outburst flood in upper Yellow River valley, China[J]. Science China Earth Sciences, 61(4): 441-449. doi: 10.1007/s11430-017-9079-3
    DRAUT A E, RUBIN D M, 2013. Assessing grain-size correspondence between flow and deposits of controlled floods in the Colorado River, U.S.A. [J]. Journal of Sedimentary Research, 83(11): 962-973. doi: 10.2110/jsr.2013.79
    GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract)
    GRILL G, LEHNER B, THIEME M, et al., 2019. Mapping the world's free-flowing rivers[J]. Nature, 569(7755): 215-221. doi: 10.1038/s41586-019-1111-9
    GUO G J, HE F D, 2018. Reflections on reservoirs reinforcement under the impact of typhoon[J]. China Water Resources(20): 66-69. (in Chinese with English abstract)
    HE L B, 1991. Study of carbonate in the fine grained sediment from the coastal zone of the Huanghe Delta and adjacent Bohai gulf[J]. Marine Science(3): 41-45. (in Chinese with English abstract)
    HU C L, MA Y Z, GUO C, et al., 2016. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment, 44(1): 110-118. (in Chinese with English abstract)
    HUANG Z G, CHEN Z X, LIU F Q, et al., 2013. Monitoring of greenhouse vegetables land using HJ-1 remotely-sensed imagery[J]. Chinese Journal of Agricultural Resources and Regional Planning, 34(5): 102-106. (in Chinese with English abstract)
    KNOX J C, 2000. Sensitivity of modern and Holocene floods to climate change[J]. Quaternary Science Reviews, 19(1-5): 439-457. doi: 10.1016/S0277-3791(99)00074-8
    LI C H, HE C L, 2004. Preparation technique of HF treatment for extracting pollen and spores from loess sediments[J]. Acta Micropalaeontologica Sinica, 21(3): 346-348. (in Chinese with English abstract) https://europepmc.org/abstract/CBA/465133
    LI H Y, TANG Q Y, ZHANG H C, et al., 2020. Quantitative sampling for grain size analysis by MS2000 laser analyzer[J]. Marine Geology and Quaternary Geology, 40(2): 200-207. (in Chinese with English abstract)
    LI H Y, ZHANG H C, CHEN G J, et al., 2017. The grain size distribution characteristics of surface sediments from plateau lakes in Yunnan province and their environmental significances[J]. Acta Sedimentologica Sinica, 35(3): 499-507. (in Chinese with English abstract)
    LI H, YANG S L, YSEBAERT T, et al., 2008. Spatial difference mechanism of sludge sediment grain size in tidal wetlands of Yangtze delta[J]. China Environmental Science, 28(2): 178-182. (in Chinese with English abstract)
    LI J, YANG S X, YE S Y, et al., 2019. Pollen and spore assemblages characteristics of alluvium around Bohai sea and its enlightenment to palynogical sources in the sea areas[J]. Marine Geology Frontiers, 35(12): 81-84. (in Chinese with English abstract)
    LIU Z R, XUE H Y, WANG C S, 2021. Late Quaternary depositional characteristics and environment significance of the Xibozhang section in Baoding, central Hebei Plain, China[J]. Journal of Geomechanics, 27(6): 1011-1023. (in Chinese with English abstract)
    LONG Y, ZHANG X B, LI M, et al., 2008. Identification of the deposited layers in landslides reservoir and investigation of the sediment yields during the later sixteenth century on the Hill Loess Plateau, China[J]. Chinese Science Bulletin, 53(24): 3908-3913. doi: 10.1007/s11434-008-0466-3
    MICALLEF A, CAMERLENGHI A, GARCIA-CASTELLANOS D, et al., 2018. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin[J]. Scientific Reports, 8(1): 1078. doi: 10.1038/s41598-018-19446-3
    QI L, WANG Y, CAI Y, et al., 2020. Paleoclimatic and paleoenvironmental evolution recorded by the aeolian sand-paleosol sequence in the Zoigê basin[J]. Journal of Geomechanics, 26 (2): 244-251. (in Chinese with English abstract)
    ST GEORGE S, HEFNER A M, AVILA J, 2020. Paleofloods stage a comeback[J]. Nature Geoscience, 13(12): 766-768. doi: 10.1038/s41561-020-00664-2
    SUN Y B, GAO S, LI J, 2003. Preliminary analysis of environmentally sensitive particle size components in marginal sea-landsource materials[J]. Chinese Science Bulletin, 48(1): 83-86. (in Chinese) doi: 10.1360/csb2003-48-1-83
    WANG J L, WU Z H, SUN Y J, et al., 2016. The origin and evolution of Qingyi River's deposits and terraces in West Sichuan, China[J]. Journal of Geomechanics, 22(3): 642-658. (in Chinese with English abstract)
    WANG X S, YANG Z Y, LØVLIE R, et al., 2006. Environmental magnetic results and paleoclimatic significance of loess-paleosol sequence in the southeastern margin of the Loess Plateau [J]. Chinese Science Bulletin, 51(13): 1575-1582. (in Chinese) doi: 10.1360/csb2006-51-13-1575
    WANG X Y, LU H Y, LI Z, et al., 2003. Paleoclimatic significance of mineral magnetic properties of loess sediments in northeastern Qinghai-Tibetan Plateau [J]. Chinese Science Bulletin, 48(15): 1693-1699. (in Chinese) doi: 10.1360/csb2003-48-15-1693
    WANG Y J, JIN B F, 2017. Comparative analysis of carbonates in sediments of the Yellow River and the Haihe River estuaries[J]. Marine Sciences, 41(7): 94-104. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX201707014.htm
    WU Q L, ZHANG P Z, ZHANG H P, et al., 2009. A palaeo-earthquake induced damming and bursting of Yellow River and the abnormal flood that destroyed Lajia relic[J]. Science in China Series D-Earth Sciences, 39(8): 1148-1159. (in Chinese with English abstract)
    XU L R, 2001. Studies on impacts of climate changes on hydrologic extremes in Mihe basin, Laizhou bay area of China[D]. Ji'nan: Shandong Normal University. (in Chinese with English abstract)
    XU X W, QIANG X K, AN Z S, et al., 2010. Magnetic susceptibility of Heqing drill core and its palaeoenvironmental implications[J]. Journal of Geomechanics, 16(4): 372-382. (in Chinese with English abstract)
    YANG B J, YU F L, ZHENG Z, et al., 2015. Changes in Holocene depositional environment of Qin'ao embayment on Nan'ao island inferred from sediment grain-size and loss-on-ignition[J]. Marine Geology and Quaternary Geology, 35(6): 41-51. (in Chinese with English abstract)
    YU G, 2011. High-resolution records of lacustrine sedimentology and palynology responding to changes in climate and hydrology[J]. Acta Sedimentologica Sinica, 29(1): 118-124. (in Chinese with English abstract)
    ZHAN W, YANG S Y, LIU X L, et al., 2010. Reconstruction of flood events over the last 150 years in the lower reaches of the Changjiang River[J]. Chinese Science Bulletin, 55(21): 2268-2274. doi: 10.1007/s11434-010-3263-8
    ZHANG W H, MU G J, 2007. Precision control on measuring organic and carbonate content with loss on ignition method[J]. Arid Land Geography, 30(3): 455-459. (in Chinese with English abstract)
    ZHANG X B, WALLING D E, HE X B, et al., 2005. A test of the pollen tracing technique for studies of vegetation changes, erosion and sedimentation in a small catchment in the loess plateau of China[J]. Quaternary Sciences, 25(6): 722-728. (in Chinese with English abstract)
    ZHANG Y C, MA Z J, GAO Q H, et al., 2006. Huge disaster risk and prevention in China[J]. Journal of Geomechanics, 12(2): 119-126. (in Chinese with English abstract)
    ZHOU H, WU L, ZHU C, et al., 2020. Feature of the great flood slackwater deposits in the Jingzhou-Gong'an section of middle reaches of the Yangtze River[J]. Journal of Stratigraphy, 44(1): 56-63. (in Chinese with English abstract)
    安芷生, PORTER S, KUKLA G, 等, 1990. 最近13万年黄土高原季风变迁的磁化率证据[J]. 科学通报, 35(7): 529-532. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199007015.htm
    常婧, 惠争闯, 耿豪鹏, 等, 2017. 黑河中游现代孢粉传播过程研究[J]. 地理科学, 37(12): 1925-1932.
    陈桥, 刘东艳, 陈颖军, 等, 2013. 粒级-标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比[J]. 地球与环境, 41(3): 319-325. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201303016.htm
    高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. doi: 10.3969/j.issn.1006-6616.2017.01.002
    郭广军, 贺芳丁, 2018. 从台风影响谈对水库加固建设与管理的几点反思[J]. 中国水利(20): 66-69. doi: 10.3969/j.issn.1000-1123.2018.20.017
    何良彪, 1991. 黄河三角洲沿岸及邻近海区细粒沉积物中的碳酸盐[J]. 海洋科学(3): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX199103016.htm
    胡彩莉, 马玉贞, 郭超, 等, 2016. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境, 44(1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201601015.htm
    黄振国, 陈仲新, 刘芳清, 等, 2013. 基于HJ-1影像的大棚菜地遥感监测技术研究: 以山东寿光市为例[J]. 中国农业资源与区划, 34(5): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201305020.htm
    李春海, 何翠玲, 2004. 黄土孢粉HF处理方法[J]. 微体古生物学报, 21(3): 346-348. doi: 10.3969/j.issn.1000-0674.2004.03.012
    李华, 杨世伦, YSEBAERT T, 等, 2008. 长江口潮间带淤泥质沉积物粒径空间分异机制[J]. 中国环境科学, 28(2): 178-182. doi: 10.3321/j.issn:1000-6923.2008.02.017
    李华勇, 张虎才, 陈光杰, 等, 2017. 云南高原湖泊表层沉积物粒度特征及环境指示意义[J]. 沉积学报, 35(3): 499-507. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703008.htm
    李华勇, 唐倩玉, 张虎才, 等, 2020. MS2000激光粒度仪测量第四纪沉积物粒度的定量进样研究[J]. 海洋地质与第四纪地质, 40(2): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002021.htm
    李杰, 杨士雄, 叶思源, 等, 2019. 渤海陆缘入海河流冲积物孢粉组合特征及其对海域孢粉来源的启示[J]. 海洋地质前沿, 35(12): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201912011.htm
    刘智荣, 薛怀宇, 王昌盛, 2021. 河北平原中部保定西伯章剖面晚第四纪沉积特征及其环境意义[J]. 地质力学学报, 27(6): 1011-1023. doi: 10.12090/j.issn.1006-6616.2021.27.06.082
    綦琳, 王燕, 蔡遥, 等, 2020. 若尔盖风成砂-古土壤序列的古气候与古环境记录研究[J]. 地址力学学报, 26(2): 244-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202002009.htm
    孙有斌, 高抒, 李军, 2003. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报, 48(1): 83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021
    王继龙, 吴中海, 孙玉军, 等, 2016. 青衣江河流沉积与阶地特征及其成因演化[J]. 地质力学学报, 22(3): 642-658. doi: 10.3969/j.issn.1006-6616.2016.03.019
    王喜生, 杨振宇, LØVLIE R, 等, 2006. 黄土高原东南缘黄土-古土壤序列的环境磁学结果及其古气候意义[J]. 科学通报, 51(13): 1575-1582. doi: 10.3321/j.issn:0023-074X.2006.13.015
    王晓勇, 鹿化煜, 李珍, 等, 2003. 青藏高原东北部黄土堆积的岩石磁学性质及其古气候意义[J]. 科学通报, 48(15): 1693-1699. doi: 10.3321/j.issn:0023-074X.2003.15.020
    王艳君, 金秉福, 2017. 黄河河口段与海河河口段沉积物碳酸盐对比分析[J]. 海洋科学, 41(7): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201707014.htm
    吴庆龙, 张培震, 张会平, 等, 2009. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J]. 中国科学D辑: 地球科学, 39(8): 1148-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200908013.htm
    徐立荣, 2001. 气候变化对莱州湾地区水文极端事件的影响研究: 以弥河流域为例[D]. 济南: 山东师范大学.
    徐新文, 强小科, 安芷生, 等, 2010. 鹤庆盆地湖相岩心磁化率记录及其古环境意义[J]. 地质力学学报, 16(4): 372-382. doi: 10.3969/j.issn.1006-6616.2010.04.005
    杨冰洁, 余凤玲, 郑卓, 等, 2015. 南澳岛青澳湾沉积物粒度与烧失量指示的全新世沉积环境变化[J]. 海洋地质与第四纪地质, 35(6): 41-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506009.htm
    于革, 2011. 高分辨湖泊沉积和孢粉记录对气候、水文变化的响应[J]. 沉积学报, 29(1): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201101014.htm
    张文河, 穆桂金, 2007. 烧失法测定有机质和碳酸盐的精度控制[J]. 干旱区地理, 30(3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021
    张信宝, WALLING D E, 贺秀斌, 等, 2005. 黄土高原小流域植被变化和侵蚀产沙的孢粉示踪研究初探[J]. 第四纪研究, 25(6): 722-728. doi: 10.3321/j.issn:1001-7410.2005.06.008
    张业成, 马宗晋, 高庆华, 等, 2006. 中国的巨灾风险与巨灾防范[J]. 地质力学学报, 12(2): 119-126. doi: 10.3969/j.issn.1006-6616.2006.02.002
    周慧, 吴立, 朱诚, 等, 2020. 长江中游荆州-公安段洪水滞流沉积物特征分析[J]. 地层学杂志, 44(1): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202001006.htm
  • 加载中

Catalog

    Figures(7)

    Article Metrics

    Article views (447) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return