Volume 28 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
LI Bin, ZHANG Wen, WEN Ran, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi:Engineering geological significance. Journal of Geomechanics, 28 (2): 191-202. DOI: 10.12090/j.issn.1006-6616.2021053
Citation: LI Bin, ZHANG Wen, WEN Ran, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi:Engineering geological significance. Journal of Geomechanics, 28 (2): 191-202. DOI: 10.12090/j.issn.1006-6616.2021053

Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi:Engineering geological significance

doi: 10.12090/j.issn.1006-6616.2021053
Funds:

This research is financially supported by the National Natural Science Foundation of China (Grant No.51468055)

More Information
  • Received: 2021-05-26
  • Revised: 2021-12-20
  • The complex terrain and marked anisotropy of regional tectonic stress field in western China make the crustal stress state an important assessment parameter. Understanding the regional crustal stress state lays the foundation for assessing the layout at the tunnel design stage and predicting rockburst, fault slip and other engineering disasters in the tunnel construction process. This study aims to explore the current in-situ stress state of the super-long highway tunnels in southern Shaanxi. We did hydraulic fracturing in-situ stress measurement of the Boreholes ZK10 and ZK11 in the Guxiandong tunnel and the Hualongshan tunnel, respectively, and thus characterized the current in-situ stress distribution of the two tunnels. The measurement results show that:The SH values at the maximum buried depths of the Guxiandong and Hualongshan super-long deep tunnels are 13 MPa and 22 MPa, respectively. The stress relations of the Guxiandong and Hualongshan tunnels are SH>Sh>Sv and SH>Sv>Sh, respectively, and horizontal principal stress plays a leading role. The SH direction is NW-NWW, which is basically consistent with the direction of the maximum principal stress in the basic database of crustal stress environment in mainland China. Three conclusions were drawn from the results of in-situ stress measurement in combination with related theories and assessment criteria. Firstly, the angle between the direction of maximum horizontal principal stress and tunnel axis is beneficial to the stability of tunnel surrounding rocks. The overall layout of the two tunnels is reasonable. Secondly, rock burst with moderate strength or above will not occur in the two tunnels according to a comprehensive study using the rock strength-stress ratio method, Tao Zhenyu criterion, Russenes criterion and rock stress-strength ratio method. Thirdly we used Mohr-Coulomb criterion and Bayer's law, let the friction coefficient μ have the value between 0.6~1.0, and then we analyzed the present stress state of the two tunnels. It is found that the stress of the fault zone near the two tunnels did not reach the critical condition of sliding instability of shallow faults in the crust, while it is in a stable stress state.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. London:Springer Chapman & Hall.
    ANDERSON E M, 1905. The dynamics of faulting[J]. Transactions of the Edinburgh Geological Society, 8(3):387-402.
    BYERLEE J, 1978a. Friction of rocks[J]. Pure and Applied Geophysics, 116(4-5):615-626.
    BYERLEE J, 1978b. Friction of rocks[M]//BYERLEE J D, WYSS M. Rock friction and earthquake prediction. Basel:Birkhäuser:615-626.
    CHANG C D, JO Y, 2015. Heterogeneous in situ stress magnitudes due to the presence of weak natural discontinuities in granitic rocks[J]. Tectonophysics, 664:83-97.
    CHEN Q C, FENG C J, MENG W, et al., 2012. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 55(12):3923-3932. (in Chinese with English abstract)
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5):853-865. (in Chinese with English abstract)
    DU J J, CHEN Q C, AN Q M, et al., 2013. Hydrofracturing in-situ stress measurement in Hanzhong Basin, Shaanxi Province[J]. Acta Seismologica Sinica, 35(6):799-808. (in Chinese with English abstract)
    DU X X, SHAO H C, 1999. Modern tectonic stress field in the Chinese mainland inversed from focal mechanism solutions[J]. Acta Seismologica Sinica, 21(4):354-360. (in Chinese with English abstract)
    FENG C J, CHEN Q C, WU M L, et al., 2012. Analysis of hydraulic fracturing stress measurement data:discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7):2149-2159. (in Chinese with English abstract)
    HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation-Part 3:Hydraulic Fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8):1011-1020.
    HAN J L, WU S R, TAN C X, et al., 2007. Studies on geostress by comparing result of AE method with that of hydraulic fracturing technique in Dongjiangkou Granite in East Qinling[J]. Chinese Journal of Rock Mechanics and Engineering, 26(1):81-86. (in Chinese with English abstract)
    JI S C, WANG Q, SUN S S, et al., 2008. Continental extrusion and seismicity in China[J]. Acta Geologica Sinica, 82(12):1644-1667. (in Chinese with English abstract)
    KE C H, 2013. The ore-forming processes of molybdenum polymetallic deposits to the west side of Mangling Pluton, North Qinling[D]. Beijing:Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    MENG W, GUO C B, MAO B Y, et al., 2021. Tectonic stress field and engineering influence of China-Nepal railway corridor[J]. Geoscience, 35(1):167-179. (in Chinese with English abstract)
    National Railway Administration of People's Republic of China, 2017. Code for design on tunnel of railway:TB 10003-2016[S]. Beijing:China Railway Publishing House. (in Chinese)
    NIU L L, FENG C J, ZHANG P, et al., 2018. In-situ measurements in the southern margin of the Ordos block[J]. Journal of Geomechanics, 24(1):25-34. (in Chinese with English abstract)
    REN Y, WANG D, LI T B, et al., 2021. In-situ geostress characteristics and engineering effect in Ya'an-Xinduqiao section of Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 40(1):65-76. (in Chinese with English abstract)
    RUSSENES B F, 1974. Analysis of rock spalling for tunnels in steep valley sides (in Norwegian)[D]. Norway:Norwegian Institute of Technology:9-17.
    SUN D S, CHEN Q C, ZHANG Y Q, 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine[J]. Journal of Geomechanics, 26(1):33-38. (in Chinese with English abstract)
    TAO Z Y, 1987. Rockburst and its criterion in highly geostress zone[J]. Yangtze River, 18(5):25-32. (in Chinese)
    WANG B, QIN X H, CHEN Q C, et al., 2020. Measurement results of in-situ stress in Guyuan area of Ningxia on the southwest margin of Ordos block and its causation analysis[J]. Geological Bulletin of China, 39(7):983-994. (in Chinese with English abstract)
    WANG C H, GUO Q L, HOU Y H, et al., 2010. In-situ stress field and project stability of underground water-sealed oil depots[J]. Chinese Journal of Geotechnical Engineering, 32(5):698-705. (in Chinese with English abstract)
    WANG C H, GAO G Y, WANG H, et al., 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2):167-174. (in Chinese with English abstract)
    WANG Q C, SUN S, LI J L, et al., 1989. The tectonic evolution of the Qinling mountain belt[J]. Scientia Geologica Sinica, 24(2):129-142. (in Chinese)
    WU M L, ZHANG C Y, FAN T Y, 2016. Stress state of the Baoxing segment of the southwestern Longmenshan Fault Zone before and after the MS7.0 Lushan earthquake[J]. Journal of Asian Earth Sciences, 121:9-19.
    WU Y Y, DENG S Z, NIU F L, et al., 2021. Crust-mantle coupling mechanism beneath the Qinling Orogen Belt revealed by SKS-wave splitting[J]. Chinese Journal of Geophysics, 64(5):1608-1619. (in Chinese with English abstract)
    XIAO B Z, LUO C W, LIU Y K, 2005. In-situ stress measurement and prediction analysis of tunnel rockburst in West Hubei[J]. Chinese Journal of Rock Mechanics and Engineering, 24(24):4472-4477. (in Chinese with English abstract)
    XIE F R, CHEN Q C, CUI X F, et al., 2007. Fundamental database of crustal stress environment in continental China[J]. Progress in Geophysics, 22(1):131-136. (in Chinese with English abstract)
    XU L S, WANG L S, 1999. Study on the Laws of rockburst and its forecasting in the tunnel of Erlang mountain road[J]. Chinese Journal of Geotechnical Engineering, 21(5):569-572. (in Chinese with English abstract)
    YANG Z B, BAI Y, YIN J M, et al., 2017. In-situ stress measurement and stability assessment of surrounding rock mass in Hejialiang tunnel of Shaanxi province[J]. Yangtze River, 48(6):52-56. (in Chinese with English abstract)
    YU L, YOU Z M, CHEN J P, et al., 2015. Rock classification for tunnels in high geostress areas[J]. Modern Tunnelling Technology, 52(3):23-30. (in Chinese with English abstract)
    ZHANG C Y, WU M L, CHEN Q C, et al., 2012. Review of in-situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 31(3):305-310. (in Chinese with English abstract)
    ZHANG C Y, WU M L, LIAO C T, 2013. In-situ stress measurement and study of stress state characteristics of Jinchuan No.3 mine[J]. Rock and Soil Mechanics, 34(11):3254-3260. (in Chinese with English abstract)
    ZHANG C Y, CHEN Q C, QIN X H, et al., 2017. In-situ stress and fracture characterization of a candidate repository for spent nuclear fuel in Gansu, northwestern China[J]. Engineering Geology, 231:218-229.
    ZHANG H, SHI G, WU H, et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4):583-594. (in Chinese with English abstract)
    ZHANG J J, FU B J, 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27(10):2034-2042. (in Chinese with English abstract)
    ZOBACK M D, HEALY J H, 1984. Friction, faulting and in situ stress[J]. Annales Geophysicae, 2(6):689-698.
    附中文参考文献
    陈群策, 丰成君, 孟文, 等, 2012. 5·12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J]. 地球物理学报, 55(12):3923-3932.
    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5):853-865.
    杜建军, 陈群策, 安其美, 等, 2013. 陕西汉中盆地水压致裂地应力测量分析研究[J]. 地震学报, 35(6):799-808.
    杜兴信, 邵辉成, 1999. 由震源机制解反演中国大陆现代构造应力场[J]. 地震学报, 21(4):354-360.
    丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析:对瞬时关闭压力PS的常用判读方法讨论[J]. 岩土力学, 33(7):2149-2159.
    国家铁路局, 2017. 铁路隧道设计规范:TB 10003-2016[S]. 北京:中国铁道出版社.
    韩金良, 吴树仁, 谭成轩, 等, 2007. 东秦岭东江口花岗岩体水压致裂法与AE法地应力测量对比研究[J]. 岩石力学与工程学报, 26(1):81-86.
    嵇少丞, 王茜, 孙圣思, 等, 2008. 亚洲大陆逃逸构造与现今中国地震活动[J]. 地质学报, 82(12):1644-1667.
    柯昌辉, 2013. 北秦岭蟒岭岩体西侧钼多金属矿床成矿作用研究[D]. 北京:中国地质科学院.
    孟文, 郭长宝, 毛邦燕, 等, 2021. 中尼铁路交通廊道现今构造应力场及其工程影响[J]. 现代地质, 35(1):167-179.
    牛琳琳, 丰成君, 张鹏, 等, 2018. 鄂尔多斯地块南缘地应力测量研究[J]. 地质力学学报, 24(1):25-34.
    任洋, 王栋, 李天斌, 等, 2021. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报, 40(1):65-76.
    孙东生, 陈群策, 张延庆, 2020. ASR法在井下矿山地应力测试中的应用前景分析[J]. 地质力学学报, 26(1):33-38.
    陶振宇, 1987. 高地应力区的岩爆及其判别[J]. 人民长江, (5):25-32.
    王斌, 秦向辉, 陈群策, 等, 2020. 鄂尔多斯地块西南缘宁夏固原地区原位地应力测量结果及其成因[J]. 地质通报, 39(7):983-994.
    王成虎, 郭啟良, 侯砚和, 等, 2010. 地下水封油库场址地应力场及工程稳定性分析研究[J]. 岩土工程学报, 32(5):698-705.
    王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2):167-174.
    王清晨, 孙枢, 李继亮, 等, 1989. 秦岭的大地构造演化[J]. 地质科学, 24(2):129-142.
    吴逸影, 邓斯壮, 钮凤林, 等, 2021. 秦岭造山带上地幔各向异性及相关的壳幔耦合型式[J]. 地球物理学报, 64(5):1608-1619.
    肖本职, 罗超文, 刘元坤, 2005. 鄂西地应力测量与隧道岩爆预测分析[J]. 岩石力学与工程学报, 24(24):4472-4477.
    谢富仁, 陈群策, 崔效锋, 等, 2007. 中国大陆地壳应力环境基础数据库[J]. 地球物理学进展, 22(1):131-136.
    徐林生, 王兰生, 1999. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报, 21(5):569-572.
    杨宗宝, 白银, 尹健民, 等, 2017. 陕西何家梁隧道地应力测量及围岩稳定性评价[J]. 人民长江, 48(6):52-56.
    余莉, 尤哲敏, 陈建平, 等, 2015. 高地应力地区隧道围岩分级研究[J]. 现代隧道技术, 52(3):23-30.
    张重远, 吴满路, 陈群策, 等, 2012. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 31(3):305-310.
    张重远, 吴满路, 廖椿庭, 2013. 金川三矿地应力测量及应力状态特征研究[J]. 岩土力学, 34(11):3254-3260.
    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4):583-594.
    张镜剑, 傅冰骏, 2008. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 27(10):2034-2042.
  • 加载中

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (645) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return