Volume 27 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
TONG Laixi, LIU Zhao, WANG Yanbin, 2021. Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica. Journal of Geomechanics, 27 (5): 705-718. DOI: 10.12090/j.issn.1006-6616.2021.27.05.058
Citation: TONG Laixi, LIU Zhao, WANG Yanbin, 2021. Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica. Journal of Geomechanics, 27 (5): 705-718. DOI: 10.12090/j.issn.1006-6616.2021.27.05.058

Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica

doi: 10.12090/j.issn.1006-6616.2021.27.05.058
Funds:

the National Natural Science Foundation of China 41972050

the National Natural Science Foundation of China 41530209

More Information
  • Received: 2021-06-30
  • Revised: 2021-08-25
  • Available Online: 2021-12-31
  • Published: 2021-10-28
  • The Rauer Group (Rauer Islands), located in the eastern margin of the Prydz Tectonic Belt in East Antarctica, represents a composite high-grade metamorphic terrane consisting of Archaean and Mesoproterozoic rocks. The Mesoproterozoic rocks contain Fe-Al-rich garnet-sillimanite-bearing Filla Paragneiss associations, and have experienced two phases of metamorphism involving Grenvillian and Pan-African events. The Archaean orthogneisses contain Mg-Al-rich sapphirine-bearing ultrahigh-temperature (UHT) pelitic granulite associations (Mather Paragneiss associations), and they consist mainly of sapphirine-bearing pelitic granulite, Mg-rich garnet-sillimanite-bearing pelitic paragneiss, orthopyroxene-sillimanite quartzite, garnet-bearing mafic granulite and calcsilicate granulite that experienced ultrahigh-temperature metamorphism. In the sapphirine-bearing pelitic granulite, typical post-peak decompression textures around garnet porphyroblasts and sillimanite aggregations (kyanite pseudomorph) developed as symplectite assemblages consisting of sapphirine-orthopyroxene and sapphirine-cordierite respectively. In the garnet-bearing mafic granulite, typical post-peak 'white-eye socket' decompression texture on garnet porphyroblast also developed as symplectite composed of orthopyroxene-plagioclase. Until recently, different researchers derived distinct-type clockwise P-T paths of various peak UHT conditions and pre-peak and post-peak evolution histories, whereas different opinions also exist regarding the timing of UHT metamorphic event and tectonic setting. For example, a UHT metamorphic event was considered to occur either during the Grenvillian period (~1000 Ma) associated with a collisional orogenesis and arc magmatism or during the Pan-African period (~590 Ma or~530 Ma) related to the Prydz orogenesis and the Gondwana continent assembly. Thus, in order to clarify the metamorphic evolution history and tectonic setting of the UHT granulites in the region, further detailed studies on analyses of the mineral assemblages and metamorphic textures and the reconstruction of P-T path as well as high-precesion zircon and monazite U-Pb chronological dating are needed, and regional geological comparison should also be undertaken.

     

  • loading
  • BLACK L P, HARLEY S L, SUN S S, et al., 1987. The rayner complex of east Antarctica: complex isotopic systematics within a Proterozoic mobile belt[J]. Journal of Metamorphic Geology, 5: 1-26. doi: 10.1111/j.1525-1314.1987.tb00366.x
    BOGER S D, WILSON C J L, FANNING C M, 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana?[J]. Geology, 29(5): 463-466. doi: 10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2
    BOGER S D, 2011. Antarctica-before and after Gondwana[J]. Gondwana Research, 19(2): 335-371. doi: 10.1016/j.gr.2010.09.003
    BROWN M, 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J]. Geology, 34(11): 961-964. doi: 10.1130/G22853A.1
    BROWN M, 2007. Metamorphic conditions in orogenic belts: a record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193
    CARSON C J, DIRKS P G H M, HAND M, et al., 1995. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, east Antarctica[J]. Geological Magazine, 132(2): 151-170. doi: 10.1017/S0016756800011729
    CARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the Progress Granite, Larsemann Hills: additional evidence for Early Paleozoic orogenesis within the east Antarctic shield and implications for Gondwana assembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275
    CARSON C J, POWELL R, WILSON C J L, et al., 1997. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, east Antarctica[J]. Journal of Metamorphic Geology, 15(1): 105-126. doi: 10.1111/j.1525-1314.1997.00059.x
    CLARK C, FITZSIMONS I C W, HEALY D, et al., 2011. How does the continental crust get really hot?[J]. Elements, 7(4): 235-240. doi: 10.2113/gselements.7.4.235
    CLARK C, TAYLOR R J M, JOHNSON T E, et al., 2019. Testing the fidelity of thermometers at ultrahigh temperatures[J]. Journal of Metamorphic Geology, 37(7): 917-934. doi: 10.1111/jmg.12486
    DIRKS P H G M, CARSON C J, WILSON C J L, 1993. The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica[J]. Antarctic Science, 5(2): 179-192. doi: 10.1017/S0954102093000240
    DIRKS P H G M, HOEK J D, WILSON C J L, et al., 1994. The Proterozoic deformation of the Vestfold Hills Block, east Antarctica: implications for the tectonic development of adjacent granulite belts[J]. Precambrian Research, 65(1-4): 277-295. doi: 10.1016/0301-9268(94)90109-0
    DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189
    DIRKS P H G M, WILSON C J L, 1995. Crustal evolution of the East Antarctic mobile belt in Prydz Bay: continental collision at 500 Ma?[J]. Precambrian Research, 75(3-4): 189-207. doi: 10.1016/0301-9268(95)80006-4
    FITZSIMONS I C W, HARLEY S L, 1991. Geological relationships in high-grade gneiss of the Brattstrand Bluffs coastline, Prydz Bay, east Antarctica[J]. Australian Journal of Earth Sciences, 38(5): 497-519. doi: 10.1080/08120099108727987
    FITZSIMONS I C W, 1996. Metapelitic migmatites from Brattstrand Bluffs, east Antarctica-metamorphism, melting and exhumation of the mid crust[J]. Journal of Petrology, 37(2): 395-414. doi: 10.1093/petrology/37.2.395
    FITZSIMONS I C W, KINNY P D, HARLEY S L, 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica[J]. Terra Nova, 9(1): 47-51. doi: 10.1046/j.1365-3121.1997.d01-8.x
    FITZSIMONS I C W, 2000. Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens[J]. Geology, 28(10): 879-882. doi: 10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2
    GREW E S, CARSON C J, CHRISTY A G, et al., 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, east Antarctica[J]. Precambrian Research, 206-207: 87-108. doi: 10.1016/j.precamres.2012.02.016
    GUO J, PENG P, CHEN Y, et al., 2012. UHT Sapphirine granulite metamorphism at 1.93~1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research, 222-223: 124-142. doi: 10.1016/j.precamres.2011.07.020
    HARLEY S L, 1987. Precambrian geological relationships in high-grade gneisses of the Rauer Islands, East Antarctica[J]. Australian Journal of Earth Sciences, 34(3): 175-207. doi: 10.1080/08120098708729404
    HARLEY S L, 1988. Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic gneisses[J]. Journal of Petrology, 29(5): 1059-1095. doi: 10.1093/petrology/29.5.1059
    HARLEY S L, FITZSIMONS I C W, 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 231-243. doi: 10.1111/j.1525-1314.1991.tb00519.x
    HARLEY S L, 1998a. On the occurrence and characterization of ultrahigh-temperature crustal Metamorphism[M]//TRELOAR P J, O'BRIEN P J. What Drives Metamorphism and Metamorphic Reactions? Geological Society, London, Special Publications, 138(1): 81-107.
    HARLEY S L, 1998b. Ultrahigh temperature granulite metamorphism (1050℃, 12 kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, east Antarctica[J]. Journal of Metamorphic Geology, 16(4): 541-562. doi: 10.1111/j.1525-1314.1998.00155.x
    HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X
    HARLEY S L, MOTOYOSHI Y, 2000. Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120℃ UHT metamorphism in the Napier complex, Antarctica, and implications for the entropy of sapphirine[J]. Contributions to Mineralogy and Petrology, 138(4): 293-307. doi: 10.1007/s004100050564
    HARLEY S L, 2003. Archaean-cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications[M]//YOSHIDA M, WINDLEY B F, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 203-230.
    HARLEY S L, 2004. Extending our understanding of ultrahigh temperature crustal metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 99(4): 140-158. doi: 10.2465/jmps.99.140
    HARLEY S L, KELLY N M, 2007. The impact of zircon-garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains: an example from the Rauer Islands, East Antarctica[J]. Chemical Geology, 241(1-2): 62-87. doi: 10.1016/j.chemgeo.2007.02.011
    HARLEY S L, 2008. Refining the P-T records of UHT crustal metamorphism[J]. Journal of Metamorphic Geology, 26(2): 125-154. doi: 10.1111/j.1525-1314.2008.00765.x
    HARLEY S L, HOKADA T, JEAN-MARE M, et al., 2009. Sapphirine+quartz in the Rauer Islands, Antarctica: evidence for 590 Ma UHT metamorphism[C]//Abstract of Granulites and Granulites Conference: 40.
    HARLEY S L, 2014. Antarctica in Gondwana and earlier supercontinents: evidence from the Rauer Islands region, Prydz Bay[C]//2014 National Symposium on Polar Sciences of China (Abst). Qingdao: 217-218.
    HARLEY S L, 2016. A matter of time: the importance of the duration of UHT metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 50-72. doi: 10.2465/jmps.160128
    HENSEN B J, ZHOU B, 1995. A Pan African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating[J]. Australian Journal of Earth Sciences, 42(3): 249-258. doi: 10.1080/08120099508728199
    HENSEN B J, ZHOU B, 1997. East Gondwana amalgamation by Pan-African collision? Evidence from Prydz Bay, east Antarctica[M]//RICCI C A. The Antarctic Region: Geological Evolution and Progress. Siena: Terra Antartica Publ: 115-119.
    HOKADA T, HARLEY S L, DUNKLEY D J, et al., 2016. Peak and post-peak development of UHT metamorphism at Mather Peninsula, Rauer Islands: zircon and monazite U-Th-Pb and REE chemistry constraints. Journal of Mineralogical and Petrological Sciences, 111(2): 89-103. doi: 10.2465/jmps.150829
    HU J M, LIU X C, ZHAO Y, et al., 2008. Advances in the study of the orogeny and structural deformation of Prydz Tectonic belt in East Antarctica[J]. Acta Geoscientica Sinica, 29(3): 343-354. (in Chinese with English abstract) http://www.oalib.com/paper/1559361
    KELSEY D E, WHITE R W, POWELL R, et al., 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica[J]. Journal of Metamorphic Geology, 21(8): 739-759. doi: 10.1046/j.1525-1314.2003.00476.x
    KELSEY D E, HAND M, CLARK C, et al., 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, east Antarctica[J]. Journal of the Geological Society, 164(4): 667-683.
    KEMP A I S, SHIMURA T, HAWKESWORTH C J, 2007. Linking granulites, silicic magmatism, and crustal growth in arcs: ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan[J]. Geology, 35(9): 807-810. doi: 10.1130/G23586A.1
    KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252
    LEI H C, XU H J, 2018. A review of ultrahigh temperature metamorphism[J]. Journal of Earth Science, 29(5): 1167-1180. doi: 10.1007/s12583-018-0846-9
    LI Z L, YANG X Q, LI Y Q, et al., 2014. Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic belt: constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high-temperature granulite[J]. Lithos, 204: 83-96. doi: 10.1016/j.lithos.2014.05.022
    LIU X C, JAHN B M, ZHAO Y, et al., 2006. Late Pan-African granitoids from the Grove Mountains, east Antarctica: age, origin and tectonic implications[J]. Precambrian Research, 145(1-2): 131-154. doi: 10.1016/j.precamres.2005.11.017
    LIU X C, ZHAO Y, LIU X H, et al., 2007. Late Neoproterozoic-Early Paleozoic tectonothermal events in East Antarctica: implications for amalgamation of the Gondwana supercontinent[J]. Geological Journal of China Universities, 13(3): 546-560. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200703017.htm
    LIU X C, ZHAO Y, ZHAO G C, et al., 2007. Petrology and geochronology of granulites from the McKaskle Hills, eastern Amery Ice shelf, Antarctica, and implications for the evolution of the Prydz Belt[J]. Journal of Petrology, 48(8): 1443-1470. doi: 10.1093/petrology/egm024
    LIU X C, 2009. Polymetamorphism of the Prydz belt, East Antarctica: implications for the reconstruction of the Rodinia and Gondwana supercontinents[J]. Acta Petrologica Sinica, 25(8): 1808-1818. (in Chinese with English abstract) http://www.researchgate.net/publication/286667958_Polymetamorphism_of_the_Prydz_Belt_East_Antarctica_Implications_for_the_reconstruction_of_the_Rodinia_and_Gondwana_supercontinents
    LIU X C, HU J M, ZHAO Y, et al., 2009a. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, east Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana[J]. Precambrian Research, 174(1-2): 181-199. doi: 10.1016/j.precamres.2009.07.001
    LIU X C, ZHAO Y, SONG B, et al., 2009b. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003
    LIU X C, ZHAO Y, HU J M, et al., 2013. The Grove Mountains: a typical Pan-African metamorphic terrane in the Prydz belt, east Antarctica[J]. Chinese Journal of Polar Research, 25(1): 7-24. (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=JDYZ201301001&dbcode=CJFD&year=2013&dflag=pdfdown
    LIU X C, WANG W R Z, ZHAO Y, et al., 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, east Antarctica[J]. Journal of Metamorphic Geology, 32(9): 1041-1062. doi: 10.1111/jmg.12106
    LIU X C, 2018. Deciphering multiple metamorphic events in high-grade metamorphic terranes: a case from the Amery area of East Antarctica[J]. Acta Petrologica Sinica, 34(4): 925-939. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201804007.htm
    LIU X H, TONG L X, LI J L, et al., 1995. Tectonic evolution of east Antarctic shield during mesoproterozoic and early paleozoic[C]//Abstract Volume of Conference on Geology across Taiwan Straits (2). Taipei, China: China Geological Association Press, Taipei: 165-169. (in Chinese)
    LIU X H, ZHAO Y, LIU X C, et al., 2002. Geology of the Grove Mountains in East Antarctica: new evidence for the final suture of Gondwana land[J]. Science in China Series D: Earth Sciences, 46(4): 305-319.
    LIU Z, BARTOLI O, TONG L X, et al., 2020. Permian ultrahigh-temperature reworking in the southern Chinese Altai: evidence from petrology, P-T estimates, zircon and monazite U-Th-Pb geochronology[J]. Gondwana Research, 78: 20-40. doi: 10.1016/j.gr.2019.08.007
    MORAES R, BROWN M, FUCK R A, et al., 2002. Characterization and P-T evolution of melt-bearing ultrahigh-temperature granulites: an example from the Anápolis-Itauçu complex of the Brasília Fold Belt, Brazil[J]. Journal of Petrology, 43(9): 1673-1705. doi: 10.1093/petrology/43.9.1673
    PHILLIPS G, WILSON C J L, PHILLIPS D, et al., 2007. Thermochronological (40Ar/39Ar) evidence of early Palaeozoic basin inversion within the southern Prince Charles Mountains, east Antarctica: implications for East Gondwana[J]. Journal of the Geological Society, 164(4): 771-784. doi: 10.1144/0016-76492006-073
    REN L D, ZHAO Y, LIU X H, et al., 1992. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica[M]//YOSHIDA Y. Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing: 145-153.
    REN L D, LI C, WANG Y B, et al., 2016. On constraining the Pan-African high-grade metamorphism time of the Larsemann Hills, East Antarctica[J]. Chinese Journal of Polar Research, 28(4): 451-461. (in Chinese with English abstract) http://www.americangeosciences.org/sites/default/files/igc/1782.pdf
    SANTOSH M, TSUNOGAE T, LI J H, et al., 2007. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: implications for Paleoproterozoic ultrahigh temperature metamorphism[J]. Gondwana Research, 11(3): 263-285. doi: 10.1016/j.gr.2006.10.009
    SANTOSH M, LIU S J, TSUNOGAE T, et al., 2012. Paleoproterozoic ultrahigh temperature granulites in the North China Craton: implications for tectonic models on extreme crustal metamorphism[J]. Precambrian Research, 222-223: 77-106. doi: 10.1016/j.precamres.2011.05.003
    SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3
    SIMS J P, DIRKS P H G M, CARSON C J, et al., 1994. The structural evolution of the Rauer Group, East Antarctica: mafic dykes as passive markers in a composite Proterozoic terrain[J]. Antarctic Science, 6(3): 379-394. doi: 10.1017/S0954102094000581
    SIMS J P, WILSON C J L, 1997. Strain localisation and texture development in a granulite-facies shear zone-the Rauer Group, East Antarctica[M]//RICCI C A. The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antartica Publ: 131-138.
    THOST D E, HENSEN B J, MOTOYOSHI Y, 1991. Two-stage decompression in garnet-bearing mafic granulites from Sostrene Island, Prydz Bay, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 245-256. doi: 10.1111/j.1525-1314.1991.tb00520.x
    TINGEY R J, 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica[M]//TINGEY R J. Oxford: The Geology of Antarctica. Oxford University Press: 1-73.
    TONG L X, LIU X H, ZHANG L S, et al., 1997. Characteristics of the early remnant mineral associations in granulite-facies rocks from the Larsemann Hills, East Antarctica and their metamorphic conditions[J]. Acta Petrologica Sinica, 13(2): 127-138. (in Chinese with English abstract) http://www.polar.gov.cn/archive/download/?id=1246
    TONG L X, LIU X, ZHANGL, et al., 1998. The 40Ar-39Ar ages of hornblendes in Grt-PL-bearing amphibolite from the Larsemann Hills, East Antarctica and their geological implications[J]. Chinese Journal of Polar Research, 10(3): 161-171. (in Chinese with English abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=4000971879
    TONG L X, WILSON C J L, LIU X, 2002. A high-grade event of~1100 Ma preserved within the~Ma mobile belt of the Larsemann Hills, east Antarctica: further evidence from 40Ar-39Ar dating[J]. Terra Antartica, 9: 73-86. http://www.researchgate.net/publication/267811544_A_high-grade_event_of_1100_Ma_preserved_within_the_500_Ma_mobile_belt_of_the_Larsemann_Hills_East_Antarctica_Further_evidence_from_40Ar-39_Ar_dating
    TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004
    TONG L X, LIU X H, WANG Y B, et al., 2012. Metamorphism evolution of pelitic granulites from the Larsemann Hills, East Antarctica[J]. Acta Geologica Sinica, 86(8): 1273-1290. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201208011&dbcode=CJFD&year=2012&dflag=pdfdown
    TONG L X, LIU X H, WANG Y B, et al., 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013
    TONG L X, JAHN B M, LIU X H, et al., 2017. Ultramafic to mafic granulites from the Larsemann Hills, East Antarctica: geochemistry and tectonic implications[J]. Journal of Asian Earth Sciences, 145: 679-690. doi: 10.1016/j.jseaes.2017.06.012
    TONG L X, LIU Z, LI Z X, et al., 2019. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications[J]. Precambrian Research, 326: 385-398. doi: 10.1016/j.precamres.2017.12.045
    WANG Y B, TONG L X, LIU D Y, 2007. Zircon U-Pb ages from an ultra-high temperature metapelite, Rauer Group, east Antarctica: implications for overprints by Grenvillian and Pan-African events[R]. Reston: U.S. Geological Survey, doi: 10.3133/of2007-1047.srp023.
    WANG Y B, LIU D, CHUNG S L, et al., 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in east Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07
    WEI C J, 2012. Advance of metamorphic petrology during the first decade of the 21st century[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(5): 415-427. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201205001.htm
    WILSON C J L, QUINN C, TONG L X, et al., 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermo-chronology[J]. Antarctic Science, 19(3): 339-353. doi: 10.1017/S0954102007000478
    ZHAO Y, SONG B, WANG Y, et al., 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KANINUMA K, SHIRAISHI K. Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing Company: 153-169.
    ZHAO Y, SONG B, ZHANG Z Q, et al., 1995. Early Paleozoic (Pan African) thermal event of the Larsemann Hills and its neighbours, Prydz Bay, East Antarctica[J]. Science in China (Series B), 38(1): 74-84. http://www.cnki.com.cn/Article/CJFDTotal-JBXG199501008.htm
    ZHAO Y, LIU X H, SONG B, et al., 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0
    ZHAO Y, LIU X H, LIU X C, et al., 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics[M]//YOSHIDA M, WINDLEY B E, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 231-245.
    ZHENG Y F, CHEN R X, 2017. Regional metamorphism at extreme conditions: implications for orogeny at convergent plate margins[J]. Journal of Asian Earth Sciences, 145: 46-73. doi: 10.1016/j.jseaes.2017.03.009
    胡健民, 刘晓春, 赵越, 等, 2008. 南极普里兹造山带性质及构造变形过程[J]. 地球学报, 29(3): 343-354. doi: 10.3321/j.issn:1006-3021.2008.03.008
    刘晓春, 赵越, 刘小汉, 等, 2007. 东南极晚新元古-早古生代构造热事件及其在冈瓦纳超大陆重建中的意义[J]. 高校地质学报, 13(3): 546-560. doi: 10.3969/j.issn.1006-7493.2007.03.022
    刘晓春, 2009. 东南极普里兹带多期变质作用及其对罗迪尼亚和冈瓦纳超大陆重建的启示[J]. 岩石学报, 25(8): 1808-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908008.htm
    刘晓春, 赵越, 胡健民, 等, 2013. 东南极格罗夫山: 普里兹造山带中一个典型的泛非期变质地体[J]. 极地研究, 25(1): 7-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201301001.htm
    刘晓春, 2018. 高级变质地体中多期变质事件的甄别: 以东南极埃默里地区为例[J]. 岩石学报, 34(4): 925-939. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804007.htm
    刘小汉, 仝来喜, 李继亮, 等, 1995. 东南极地盾中元古-早古生代构造演化[C]//. 海峡两岸地球科学研讨会论文集(详细摘要)(2). 台北: 台北中国地质协会出版社: 165-169.
    刘小汉, 赵越, 刘晓春, 等, 2002. 东南极格罗夫山地质特征: 冈瓦纳最终缝合带的新证据[J]. 中国科学(D辑), 32(6): 457-468. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200206002.htm
    任留东, 李崇, 王彦斌, 等, 2016. 关于拉斯曼丘陵泛非期高级变质作用时代间的限定[J]. 极地研究, 28(4): 451-461. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201604003.htm
    仝来喜, 刘小汉, 张连生, 等, 1997. 东南极拉斯曼丘陵麻粒岩相岩石中早期残留矿物组合的特征及其变质作用条件[J]. 岩石学报, 13(2): 127-138. doi: 10.3321/j.issn:1000-0569.1997.02.001
    仝来喜, 刘小汉, 张连生, 等, 1998. 东南极拉斯曼丘陵石榴斜长角闪岩中角闪石的40Ar-39Ar年龄及其地质意义[J]. 极地研究, 10(3): 161-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ803.000.htm
    仝来喜, 刘小汉, 王彦斌, 等, 2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化[J]. 地质学报, 86(8): 1273-1290. doi: 10.3969/j.issn.0001-5717.2012.08.010
    魏春景, 2012. 21世纪最初十年变质岩石学研究进展[J]. 矿物岩石地球化学通报, 31(5): 415-427. doi: 10.3969/j.issn.1007-2802.2012.05.001
    赵越, 宋彪, 张宗清, 等, 1993. 东南极拉斯曼丘陵及其邻区的泛非热事件[J]. 中国科学(B辑), 23(9): 1001-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199309016.htm
  • 加载中

Catalog

    Figures(4)

    Article Metrics

    Article views (262) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return