Volume 27 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
DENG Jun, ZHAN Mingguo, ZHOU Weijin, et al., 2021. Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method. Journal of Geomechanics, 27 (3): 374-390. DOI: 10.12090/j.issn.1006-6616.2021.27.03.034
Citation: DENG Jun, ZHAN Mingguo, ZHOU Weijin, et al., 2021. Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method. Journal of Geomechanics, 27 (3): 374-390. DOI: 10.12090/j.issn.1006-6616.2021.27.03.034

Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method

doi: 10.12090/j.issn.1006-6616.2021.27.03.034
Funds:  This research is financially supported by Talent Highland Project of Key Mineral Resources Deep Exploration in Guangxi (Notification of Organization Department in Guangxi, No.[2019]85, 2019-2023), Provincial Entrusted Project under China Geological Survey (Grant No.DD20190379-19), and Preliminary Work Project of Bureau of Geological and Mineral Exploration and Development in Guangxi Institute of Geological Survey (Comprehensive study of geology and mineral resources in Guangxi, No.[2019]06)
More Information
  • Received: 2021-02-01
  • Revised: 2021-04-22
  • Published: 2021-06-28
  • Quantitative prediction of mineral resources based on multi-information fusion is the leading topic of resource potential prediction, in which the deep mining of different geological background information and geochemical data is the key problem and still challenging. In this study, we analyzed the spatial distribution characteristics of main metallogenic and associated elements such as Au, Ag, Mn, Cu, Pb, Zn, Sn and Sb in 60767 geochemical samples on the platforms like ArcGIS and GeoDAS, by summerzing the geological background information and metallogenic controlling factors of each tectonic unit in Guangxi. Based on the GeoDAS paltform, through IDW interpolation, S-A anomaly decomposition, principal component analysis and other technologies, the data from the layers with geochemical component element anomaly, gravity and aeromagnetic anomaly and the buffers at the intersection of magmatic rock and fault were used as the training points for the utilization of the fuzzy weights of evidence. A posteriori probability map was drawn up to delineate the favorable metallogenic areas for Carlin-type gold deposit and fracture zone altered gold deposit. This study is of great significance to the application of new metallogenic theories and evaluation techniques in the evaluation or zoning of mineral resources potential.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AGTERBERG F P, 1989. Computer programs for mineral exploration[J]. Science, 245(4913): 76-81. doi: 10.1126/science.245.4913.76
    AGTERBERG F P, CHENG Q M, 2002. Conditional independence test for weights-of-evidence modeling[J]. Natural Resources Research, 11(4): 249-255. doi: 10.1023/A:1021193827501
    AGTERBERG F P, 2011. Modified weights-of-evidence method for regional mineral Resource estimation[J]. Natural Resources Research, 20(2): 95-101. doi: 10.1007/s11053-011-9138-0
    BONHAM CARTER G, 1994. Geographic information systems for geoscientists: modelling with GIS[M]. New York: Pergamon Press: 398.
    BONHAM CARTER G, CHENG Q M, 2001. Spatially weighted principal component analysis[J]. Presented at IAMG 2001 Meeting. Cancún Mexico September 6-12.
    CARRANZA E J M, 2008. Handbook of exploration and environmental geochemistry[M]. Amsterdam: Elsevier: 1-368.
    CHEN M, 2016. Analysis of the Guangxi gold deposit ore-controlling tectonic characteristics and prospecting prospect[J]. World Nonferrous Metals(12): 119-120. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-COLO201612050.htm
    CHEN Y Q, XIA Q L, HUANG J N, et al., 2007. Application of the weights-of-evidence method in mineral resource assessments in the southern segment of the "Sanjiang metallogenic zone" southwestern China[J]. Geology in China, 34(1): 132-141. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200701018.htm
    CHENG Q M, 1999. Multifractality and spatial statistics[J]. Computers and Geosciences, 25: 949-961. doi: 10.1016/S0098-3004(99)00060-6
    CHENG Q M, AGTERBERG F P, BALLANTYNE S B, 1994. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
    CHENG Q M, ZHANG S Y, 2002. Fuzzy weights of evidence method implemented in GeoDAS GIS for information extraction and integration for prediction of point events. In: Proceedings of IEEE international conference of geosciences and remote sensing (IGARSS02), Toronto, Canada, Jun 3, 24-28.
    CHENG Q M, AGTERBERG F P, 1999. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649
    CHENG Q M, CHEN Z J, KHALED A, et al., 2007. Application of fuzzy weights of evidence method in mineral resource assessment for gold in Zhenyuan District, Yunnan Province, China[J]. Earth Science-Journal of China University of Geosciences, 32(2): 175-184. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dqkx200702004
    CHENG Q M, 2012. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J]. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007
    DAYA A A, 2015. Comparative study of C-A, C-P, and N-S fractal methods for separating geochemical anomalies from background: A case study of Kamoshgaran region, northwest of Iran[J]. Journal of Geochemical Exploration, 150: 52-63. doi: 10.1016/j.gexplo.2014.12.015
    DENG M F, 2010. Binary pattern recognition in the presence of correlated multiple dependent variables[J]. Natural Resources Research, 19(4): 269-278. doi: 10.1007/s11053-010-9128-7
    GONG H S, HAN R S, LI Z T, et al, 2020. Element association anomaly of tectonites and prediction of concealed deposit in the Xiaozhuqing exploration area on the periphery of Huize lead-zinc mine area, northeastern Yunnan Province[J]. Journal of Geomechanics, 26(3): 419-431, doi: 10.12090/j.issn.1006-6616.2020.26.03.036.
    HE Q L, ZHANG H C, SONG P, et al., 2013. Geological Characteristics and Prospecting Criteria of Paoli Carlin-Type Gold Deposits in Guangxi Province[J]. Gold Science and Technology, 21(6): 48-52. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HJKJ201306020.htm
    HONG H Y, TSANGARATOS P, ILIA I, et al., 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China[J]. Science of the Total Environment, 625: 575-588. doi: 10.1016/j.scitotenv.2017.12.256
    LI B B, LIU B L, GUO K, et al., 2019. Application of a maximum entropy model for mineral prospectivity maps[J]. Minerals, 9(9): 556. doi: 10.3390/min9090556
    LI C M, 2010. Distribution regularity and metallogenic characteristics of gold deposits in Guangxi[J]. Mineral Deposits, 29(S1): 951-952. (in Chinese)
    LIN J H, LUO Y Y, SHU G., et al., 2015. Regionalore-forming regularity and division of minerogeneticseriesin Guangxi[J]. Mineral Deposits, 34(6): 1270-1294. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201506014.htm
    LIU S F, 2017. Fractal analysis on geochemical distribution and anomaly separation in the Guangxi Zhuang Autonomous Region[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    LIU Y P, ZHU L X, ZHOU Y Z, et al., 2020. Experimental research on big data mining and intelligent prediction of prospecting target area: application of convolutional neural network model[J]. Geotectonica et Metallogenia, 44(2): 192-202, doi: 10.16539/j.ddgzyckx.2020.02.003. (in Chinese with abstract).
    SHI J, ZHU W W, WANG X, et al., 2017. Bibliometrics analysis on the trend of international earth sciences in recent 5 Years[J]. Acta Geologica Sinica, 91(12): 2881-2888. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201712021&dbcode=CJFD&year=2017&dflag=pdfdown
    SUN T, LI H L, WU K X, et al., 2020. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi province, China[J]. Minerals, 10(2): 102. doi: 10.3390/min10020102
    WANG Z W, WANG L, HUANG G W, et al, 2020. Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network[J]. Journal of Geomechanics, 26(4): 575-582, doi: 10.12090/j.issn.1006-6616.2020.26.04.050. (in Chinese with English abstract)
    WILLIAMS N D, ELLIOTT B A, KYLE J R, 2020. A predictive geospatial exploration model for mississippi valley type Pb-Zn mineralization in the southeast missouri lead district[J]. Natural Resources Research, 29(1): 285-310. doi: 10.1007/s11053-020-09618-2
    WU R H, PANG B C, TAN J, et al., 2012. Preliminary analysis of distribution regularity and prospecting direction of gold deposits in Guangxi[J]. Mineral Resources and Geology, 26(4): 291-298. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD201204005.htm
    XIAO K Y, DING J H, LOU D B, 2009a. Quantitative assessment of porphyry copper in eastren Tianshan[J]. Geology and Exploration, 45(6): 637-644. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200906003.htm
    XIAO K Y, DING J H, LOU D B, 2009b. A tentative discussion on theory of minerogenetic series and mineral resource assessment[J]. Mineral Deposits, 28(3): 357-365. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200903012.htm
    YANG B, PENG S L, LI S R, et al., 2007. Metallogenic Series and Metallogenic Belt of Nonferrous Metals in Guangxi[J]. Mineral Resources and Geology, 21(1): 8-11. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200701001.htm
    ZHAI Y S, DENG J, WANG J P, et al., 2004. Researches on deep ore prospecting[J]. Mineral Deposits, 23(2): 142-149. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200402002.htm
    ZHANG S Y, CHENG Q M, ZHANG S P, et al., 2012. Improvement of weighted weights of evidence and its applications in Sn-Cu mineral potential mapping in Gejiu, Yunnan province, China[J]. Earth Science-Journal of China University of Geosciences, 37(6): 1175-1182. (in Chinese with English abstract)
    ZHAO P D, 2007. Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers, 14(5): 1-10. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200705002.htm
    ZHOU Y Z, WANG J, ZUO R G, et al., 2018. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 34(11): 3173-3178. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201811002.htm
    ZHOU Y Z, CHEN C, ZHANG Q, et al., 2020. Introduction of tools for geological big data mining and their applications[J]. Geotectonica et Metallogenia, 44(2): 173-182. (in Chinese with English abstract)
    ZHOU Z C, WU Z, 2016. Distribution law and prospecting direction of gold deposit in Guangxi[J]. World Nonferrous Metals(18): 84-85. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-COLO201618035.htm
    ZHU G Q, LI H L, WEN R X, et al., 2010. The report of Guangxi concealed rockmass and deep ore prospecting[R]. Guangxi Geophysical Investigation Institute. (in Chinese)
    ZUO R G, WANG J, XIONG Y H, et al., 2021. Progresses of researches on geochemical exploration data processing during 2011-2020[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 81-92. (in Chinese with English abstract)
    陈敏, 2016. 分析广西金矿床控矿构造特征及找矿前景[J]. 世界有色金属(12): 119-120. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201612050.htm
    陈永清, 夏庆霖, 黄静宁, 等, 2007. "证据权"法在西南"三江"南段矿产资源评价中的应用[J]. 中国地质, 34(1): 132-141. doi: 10.3969/j.issn.1000-3657.2007.01.019
    成秋明, 陈志军, KHALED A, 等, 2007. 模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用[J]. 地球科学-中国地质大学学报, 32(2): 175-184. doi: 10.3321/j.issn:1000-2383.2007.02.004
    贺秋利, 张红晨, 宋鹏等, 2013. 广西袍里卡林型金矿床地质特征及找矿标志[J]. 黄金科学技术, 21(6): 48-52. doi: 10.3969/j.issn.1005-2518.2013.06.014
    龚红胜, 韩润生, 李孜腾, 等, 2020. 滇东北会泽铅锌矿区外围小竹箐勘查区构造岩元素组合异常及隐伏矿预测[J]. 地质力学学报, 26(3): 419-431, doi: 10.12090/j.issn.1006-6616.2020.26.03.036.
    李昌明, 2010. 广西金矿床分布规律及成矿特点[J]. 矿床地质, 29(S1): 951-952. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1476.htm
    林建辉, 罗允义, 树皋, 等, 2015. 广西区域成矿规律综述及成矿系列划分[J]. 矿床地质, 34(6): 1270-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506014.htm
    刘舒飞, 2017. 广西地球化学区带规律与异常分布分形解析[D]. 北京: 中国地质大学(北京).
    刘艳鹏, 朱立新, 周永章, 等, 2020. 大数据挖掘与智能预测找矿靶区实验研究: 卷积神经网络模型的应用[J]. 大地构造与成矿学, 44(2): 192-202, doi: 10.16539/j.ddgzyckx.2020.02.003.
    王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报, 26(4): 575-582, doi: 10.12090/j.issn.1006-6616.2020.26.04.050.
    吴荣华, 庞保成, 谭杰, 等, 2012. 广西金矿床的分布规律及找矿方向浅析[J]. 矿产与地质, 26(4): 291-298. doi: 10.3969/j.issn.1001-5663.2012.04.005
    肖克炎, 丁建华, 娄德波, 2009a. 东天山斑岩铜矿资源潜力评价[J]. 地质与勘探, 45(6): 637-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200906003.htm
    肖克炎, 丁建华, 娄德波, 2009b. 试论成矿系列与矿产资源评价[J]. 矿床地质, 28(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903012.htm
    杨斌, 彭省临, 李水如, 等, 2007. 广西有色金属成矿系列与成矿区带[J]. 矿产与地质, 21(1): 8-11. doi: 10.3969/j.issn.1001-5663.2007.01.002
    翟裕生, 邓军, 王建平, 等, 2004. 深部找矿研究问题[J]. 矿床地质, 23(2): 142-149. doi: 10.3969/j.issn.0258-7106.2004.02.003
    张生元, 成秋明, 张素萍, 等, 2012. 改进的加权证据权模型及其在个旧锡铜矿产资源预测中的应用[J]. 地球科学-中国地质大学学报, 37(6): 1175-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902008.htm
    赵鹏大, 2007. 成矿定量预测与深部找矿[J]. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001
    周永章, 王俊, 左仁广, 等, 2018. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 34(11): 3173-3178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811002.htm
    周永章, 陈川, 张旗, 等, 2020. 地质大数据分析的若干工具与应用[J]. 大地构造与成矿学, 44(2): 173-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002001.htm
    周泽昌, 吴钊, 2016. 广西金矿床的分布规律以及找矿方向[J]. 世界有色金属(18): 84-85. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201618035.htm
    朱国器, 黎海龙, 温融湘, 等, 2010. 广西隐伏岩体与深部找矿研究报告[R]. 广西地球物理勘察院内部科研报告.
    左仁广, 王健, 熊义辉, 等, 2021. 2011-2020年勘查地球化学数据处理研究进展[J]. 矿物岩石地球化学通报, 40(1): 81-92.
  • 加载中

Catalog

    Figures(14)

    Article Metrics

    Article views (662) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return