Volume 26 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
FENG Weiping, WANG Feiyu, WANG Zongxiu, et al., 2020. Characteristics and origin of crude oils in the Wulanhua sag. Journal of Geomechanics, 26 (6): 932-940. DOI: 10.12090/j.issn.1006-6616.2020.26.06.074
Citation: FENG Weiping, WANG Feiyu, WANG Zongxiu, et al., 2020. Characteristics and origin of crude oils in the Wulanhua sag. Journal of Geomechanics, 26 (6): 932-940. DOI: 10.12090/j.issn.1006-6616.2020.26.06.074

Characteristics and origin of crude oils in the Wulanhua sag

doi: 10.12090/j.issn.1006-6616.2020.26.06.074
More Information
  • Received: 2020-08-08
  • Revised: 2020-10-11
  • Published: 2020-12-01
  • The Wulanhua sag is a newly discovered oil-rich sag in the Erlian basin. The physical and geochemical properties of crude oils in the Wulanhua sag were systematically analyzed to reveal the characteristics and origins. The physical properties of crude oils suggest that the API gravities range from 20.2° to 40.0°, and most are normal crude oil. The biomarker parameters show considerable variation among the oils from different tectonic units, which can be separated into two crude oil families. Crude oil family-I is dominated by oils from the Tumuer tectonic unit, and characterized by low Pr/Ph and C21/C23 TT, and relatively high gammacerane/C31 hopane and regular sterane/C30 hopane. Crude oil family-I is mostly derived from the algal organic matter at low maturity levels. Crude oil family-Ⅱ consists of oils from the Saiwusu and Hongjing tectonic units, which is characterized by high Pr/Ph and C21/C23 TT, and relatively low gammacerane/C31 hopane and regular sterane/C30 hopane. Crude oil family-Ⅱ is mainly derived from the mixed algal and terrigenous organic matter at higher maturity levels. Carbon isotopic compositions of crude oil and individual n-alkanes indicate that these two crude oil families should be the products of the same set of source rocks at different maturity levels, and likely derived from the K1ba source rock in the southern sub-sag. The factors controlling differences between the two crude oil families include the heterogeneous source rock and its maturation process.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CHENG Z Q, WANG F Y, JIANG T, et al., 2018. Organic facies and hydrocarbon generation characteristics of Lower Cretaceous source rocks in Northeastern Erlian Basin[J]. Xinjiang Petroleum Geology, 39(4):384-392. (in Chinese with English abstract)
    DIAO F, WANG J W, CHEN X N, et al., 2020. Correlation of oils and source rocks and genesis of high wax oils in Gaoshangpu area, Nanpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 42(1):117-125. (in Chinese with English abstract)
    FENG W P, 2018. Analysis of the Early Cretaceous source kitchen of typical sags in the Erlian Basin and their significances[D]. Beijing: China University of Petroleum (Beijing). (in Chinese with English abstract)
    FENG W P, WANG F Y, JIANG T, et al., 2020. Origin and accumulation of petroleum in deep precambrian reservoir in Baxian Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 120:104541. doi: 10.1016/j.marpetgeo.2020.104541
    FU J M, SHENG G Y, XU J Y, et al., 1990. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments[J]. Organic Geochemistry, 16(4-6):769-779. doi: 10.1016/0146-6380(90)90116-H
    FU S, LIU Z, ZHANG Y M, et al., 2019a. Depositional systems and sequence stratigraphy of mesozoic lacustrine rift basins in NE China:A case study of the Wulan-Hua sag in the southern Erlian Basin[J]. Journal of Asian Earth Sciences, 174:68-98. doi: 10.1016/j.jseaes.2018.11.020
    FU S, LIU Z, ZHANG Y M, et al., 2019b. Source rocks geochemistry and oil-source correlation in the Aershan and first member of Tengge'er formations of the Wulan-Hua sag in south of Erlian Basin, Northeastern China[J]. Journal of Petroleum Science and Engineering, 182:106334. doi: 10.1016/j.petrol.2019.106334
    GRANTHAM P J, 1986. The occurence of unusual C27 and C29 sterane predominances in two types of Oman crude oil[J]. Organic Geochemistry, 9(1):1-10. doi: 10.1016/0146-6380(86)90077-X
    GUO Y Y, LIANG M L, WANG Z X, et al., 2019. Organic geochemistry and mineral composition characteristics in shales of Niutitang Formation, Northwestern Hunan[J]. Journal of Geomechanics, 25(3):392-399. (in Chinese with English abstract) https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20190309&flag=1
    JOHNSON C L, GREENE T J, ZINNIKER D A, et al., 2003. Geochemical characteristics and correlation of oil and nonmarine source rocks from Mongolia[J]. AAPG Bulletin, 87(5):817-846. doi: 10.1306/12170201073
    LIANG D G, ZENG X Z, WANG X P, et al., 2001. Petroleum origin in the Jizhong depression[M]. Beijing:Petroleum Industry Press. (in Chinese)
    LUO M X, XIA Y T, SHAO X M, et al., 2019. Geochemical characteristics and origin of oil from different strata in Shunbei oil and gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 41(6):849-854. (in Chinese with English abstract)
    MI J K, ZHANG S C, CHEN J P, et al., 2008. Carbon isotope characteristics and the influencing factors of the oils from Lunnan and Hadexun oil fields[J]. Acta Sedimentologica Sinica, 26(6):1071-1076. (in Chinese with English abstract)
    PENG Y, XIONG J Y, XIE J P, et al., 2019. Analysis on accumulation controlling factors of Andesite in Wulanhua Sag of Erlian Basin[J]. Oil & Gas Exploration and Development, 37(4):83-89. (in Chinese with English abstract)
    PEPPER A S, CORVI P J, 1995. Simple kinetic models of petroleum formation. Part I:oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 12(3):291-319. doi: 10.1016/0264-8172(95)98381-E
    PETERS K E, MOLDOWAN J M, 1983. The biomarker guide:interpreting molecular fossils in petroleum and ancient sediments[M]. Englewood Cliffs:Prentice Hall.
    PETERS K E, KONTOROVICH A E, MOLDOWAN J M, et al., 1993. Geochemistry of selected oils and rocks from the central portion of the West Siberian basin, Russia[J]. AAPG Bulletin, 77(5):863-887.
    PETERS K E, MOLDOWAN J M, 1993. The biomarker guide. Interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey:Prentice Hall.
    PETERS K E, WALTERS C C, MOLDOWAN J M, 2005. The biomarker guide:volume 2, biomarkers and isotopes in petroleum exploration and earth history[M]. 2nd ed. Cambridge, United Kingdom:Cambridge University Press.
    SOFER Z, 1988. Biomarkers and carbon isotopes of oils in the Jurassic Smackover Trend of the Gulf Coast States, U.S.A.[J]. Organic Geochemistry, 12(5):421-432. doi: 10.1016/0146-6380(88)90152-0
    SPIGOLON A L D, LEWAN M D, DE BARROS PENTEADO H L, et al., 2015. Evaluation of the petroleum composition and quality with increasing thermal maturity as simulated by hydrous pyrolysis:A case study using a Brazilian source rock with Type I kerogen[J]. Organic Geochemistry, 83-84:27-53. doi: 10.1016/j.orggeochem.2015.03.001
    TAO S Z, WANG C Y, DU J G, et al., 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 67:460-467. doi: 10.1016/j.marpetgeo.2015.05.030
    TEN HAVEN H L, DE LEEUW J W, RULLKÖTTER J, et al., 1987. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 330(6149):641-643. doi: 10.1038/330641a0
    TISSOT B P, WELTE D H, 1984. Petroleum formation and occurrence[M]. Berlin, Germany:Springer-Verlag Berlin Heidelberg.
    WANG F Y, FENG W P, GUAN J, et al., 2016. Geochemical assessment of lacustrine tight oil and application[J]. Journal of Jilin University (Earth Science Edition), 46(2):388-397. (in Chinese with English abstract)
    WANG H, WANG F Y, JIANG S Q, et al., 2017. The oil families and their geochemical characteristics in Sanhantala Sag, Erlian Basin[J]. Lithologic Reservoirs, 29(2):36-43. (in Chinese with English abstract)
    WANG X, LI L, YU Y, et al., 2013. Study on Paleogeomorphic restoring and structural development history of Wulanhua Sag, Erlian Basin[J]. China Petroleum Exploration, 18(6):62-68. (in Chinese with English abstract)
    XIAO H, LI M J, YANG Z, et al., 2019. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 48(2):161-170. (in Chinese with English abstract)
    YANG X D, 2018. The source kitchen and accumulation and migration in WuLanhua Sag of Erlian Basin[D]. Beijing: China University of Petroleum (Beijing). (in Chinese with English abstract)
    YUAN H Q, LIU C L, XIAO Y, et al., 2016. Sedimentary characteristics of Wulanhua sag in Erlian basin[J]. Progress in Geophysics, 31(5):2239-2245. (in Chinese with English abstract)
    ZHANG Y M, CHEN S G, CUI Y Q, et al., 2018. Lithofacies distribution and reservoir prediction of andesite in Wulanhua Sag, Erlian Basin[J]. Lithologic Reservoirs, 30(6):1-9. (in Chinese with English abstract)
    ZHOU L, WANG Z X, LI H J, et al., 2018. Accumulation pattern of organic matter in shales of the Lower Cambrian Niutitang Formation, Chuandong-Wulingshan Area[J]. Journal of Geomechanics, 24(5):617-626. (in Chinese with English abstract) https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20180504&flag=1
    ZUMBERGE J E, 1987. Prediction of source rock characteristics based on terpane biomarkers in crude oils:A multivariate statistical approach[J]. Geochimica et Cosmochimica Acta, 51(6):1625-1637. doi: 10.1016/0016-7037(87)90343-7
    程志强, 王飞宇, 江涛, 等, 2018.二连盆地东北部下白垩统烃源岩有机相与生烃特征[J].新疆石油地质, 39(4):384-392. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201804002.htm
    刁帆, 王建伟, 陈晓娜, 等, 2020.渤海湾盆地南堡凹陷高尚堡地区油源对比及高蜡油成因[J].石油实验地质, 42(1):117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202001017.htm
    冯伟平, 2018.二连盆地典型凹陷早白垩世源岩灶分析及意义[D].北京: 中国石油大学(北京).
    郭永岩, 梁明亮, 王宗秀, 等, 2019.湘西北地区下寒武统牛蹄塘组页岩有机地球化学与矿物组成特征[J].地质力学学报, 25(3):392-399. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20190309&flag=1
    梁狄刚, 曾宪章, 王雪平, 等, 2001.冀中坳陷油气的生成[M].北京:石油工业出版社.
    罗明霞, 夏永涛, 邵小明, 等, 2019.塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析[J].石油实验地质, 41(6):849-854. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201906009.htm
    米敬奎, 张水昌, 陈建平, 等, 2008.哈得逊与轮南地区原油碳同位素特征及影响因素[J].沉积学报, 26(6):1071-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200806023.htm
    彭宇, 熊骥禹, 谢近平, 等, 2019.二连盆地乌兰花凹陷安山岩成藏主控因素分析[J].天然气与石油, 37(4):83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYS201904020.htm
    王飞宇, 冯伟平, 关晶, 等, 2016.湖相致密油资源地球化学评价技术和应用[J].吉林大学学报(地球科学版), 46(2):388-397. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201602008.htm
    王浩, 王飞宇, 降栓奇, 等, 2017.二连盆地赛汉塔拉凹陷原油地球化学特征与油族划分[J].岩性油气藏, 29(2):36-43. doi: 10.3969/j.issn.1673-8926.2017.02.005
    王鑫, 李玲, 余雁, 等, 2013.二连盆地乌兰花凹陷古地貌恢复及构造发育史研究[J].中国石油勘探, 18(6):62-68. doi: 10.3969/j.issn.1672-7703.2013.06.011
    肖洪, 李美俊, 杨哲, 等, 2019.不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J].地球化学, 48(2):161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201902006.htm
    杨雪迪, 2018.二连盆地乌兰花凹陷烃源灶与油气成藏[D].北京: 中国石油大学(北京).
    袁红旗, 刘长利, 肖阳, 等, 2016.二连盆地乌兰花凹陷沉积特征研究[J].地球物理学进展, 31(5):2239-2245. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605049.htm
    张以明, 陈树光, 崔永谦, 等, 2018.二连盆地乌兰花凹陷安山岩岩相展布及储层预测[J].岩性油气藏, 30(6):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201806001.htm
    周磊, 王宗秀, 李会军, 等, 2018.川东-武陵山地区下寒武统牛蹄塘组页岩有机质富集模式[J].地质力学学报, 24(5):617-626. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20180504&flag=1
  • 加载中

Catalog

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (541) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return