Citation: | SHEN Cheng, ZHAO Jinzhou, XIE Jun, et al., 2020. Target window spatial distribution prediction based on network fracability: A case study of shale gas reservoirs in the Changning Block, southern Sichuan Basin. Journal of Geomechanics, 26 (6): 881-891. DOI: 10.12090/j.issn.1006-6616.2020.26.06.069 |
CHEN J G, DENG J G, YUAN J L, et al., 2015. Determination of fracture toughness of modes Ⅰ and Ⅱ of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering, 34(6):1101-1105. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201506003.htm
|
CHEN S, ZHAO W Z, OUYANG Y L, et al., 2017. Comprehensive prediction of shale gas sweet spots based on geophysical properties:A case study of the Lower Silurian Longmaxi Fm in Changning block, Sichuan Basin[J]. Natural Gas Industry, 37(5):20-30. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201705005.htm
|
GASSMANN F, 1961. Uber die Elastizitat poroser Medien[J]. Veirteljahrsschrift der Naturforschenden Gesellschaft in Zzirich, 96:1-23. http://ci.nii.ac.jp/naid/10007502222
|
GRIFFITH A A, 1921. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 221(582-593):163-198. http://adsabs.harvard.edu/abs/1921rspta.221..163g
|
GUO J C, YIN J, ZHAO Z H, 2014. Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 33(8):1589-1596. (in Chinese with English abstract) http://www.researchgate.net/publication/287767575_Feasibility_of_formation_of_complex_fractures_under_cracks_interference_in_shale_reservoir_fracturing
|
JI G F, LI K D, ZHANG G S, et al., 2019. Fractal calculation method of mode Ⅰ fracture toughness of shale rock and its application[J]. Rock and Soil Mechanics, 40(5):1925-1931. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201905035.htm
|
LI S C, LI K D, et al., 2020. A method for evaluating shale fracability based on shear slip fractures under plane strain and intergranular fracture[J]. Journal of Chongqing University (Natural Science Edition), 43(4):25-32. (in Chinese with English abstract)
|
JIA C Y, JIA A L, HE D B, et al., 2017. Key factors influencing shale gas horizontal well production[J]. Natural Gas Industry, 37(4):80-88. (in Chinese with English abstract) http://www.researchgate.net/publication/316942437_Key_factors_influencing_shale_gas_horizontal_well_production
|
JIN Y, CHEN M, ZHANG X D, 2001. Determination of fracture toughness for deep well rock with geophysical logging data[J]. Chinese Journal of Rock Mechanics and Engineering, 20(4):454-556. (in Chinese with English abstract) http://www.oalib.com/paper/1483321
|
LI S J, JIN Z J, YUAN Y S, et al., 2016. Triaxial stress experiment of mudstone under simulated geological conditions and its petroleum significance[J]. Oil & Gas Geology, 37(4):598-605. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_oil-gas-geology_thesis/0201218328373.html
|
LI S J, ZHOU Y, SUN D S, 2013. Rock mechanic experiment study of evaluation on cap rock effectiveness[J]. Petroleum Geology & Experiment, 35(5):574-578, 586. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201305020.htm
|
LIU H M, ZHENG J K, ZHAO W S, et al., 2019. A new method for evaluating brittleness index of deep tight sandstone reservoir[J]. Journal of Geomechanics, 25(4):492-500. (in Chinese with English abstract)
|
LIU W P, ZHANG C L, GAO G D, et al., 2017. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 38(2):175-184. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201702005.htm
|
LIU Z S, SUN Z D, 2015. New brittleness indexes and their application in shale/clay gas reservoir prediction[J]. Petroleum Exploration and Development, 42(1):117-124. (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/s1876380415600167
|
A, ABDULRAHEEM A, ABOUELRESH M I, et al., 2019. Lithofacies controls on mechanical properties and brittleness in Qusaiba Shale, Rub' Al-Khali Basin, Saudi Arabia[C]//International petroleum technology conference. Beijing, China: International Petroleum Technology Conference, doi: 10.2523/IPTC-19084-MS.
|
NIU L, ZHU R K, WANG L S, et al., 2015. Characteristics and evaluation of the Meso-Neoproterozoic shale gas reservoir in the northern North China[J]. Acta Petrolei Sinica, 36(6):664-672, 698. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201506003.htm
|
REN H L, LIU C L, LIU W P, et al., 2020. Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block, Sichuan Basin[J]. Journal of Geomechanics, 26(1):74-83.
|
REN L, LIN R, ZHAO J Z, et al., 2018. A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J]. Natural Gas Industry, 38(8):47-56. (in Chinese with English abstract)
|
RICKMAN R, MULLEN M J, PETRE J E, et al., 2008. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]//SPE annual technical conference and exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, doi: 10.2118/115258-MS.
|
SAHU A, DAS M K, 2019. Petrophysical evaluation of organic richness and brittleness of shale for unconventional hydrocarbon prospecting: A case study on Vadaparru shale, Krishna Godavari Basin, India[C]//SPE middle east oil and gas show and conference. Manama, Bahrain: Society of Petroleum Engineers, doi: 10.2118/194976-MS.
|
SHEN C, XIE J, ZHAO J Z, et al., 2020. Evolution difference of fracability of marine shale gas reservoir in Luzhou and West Chongqing block, Sichuan Basin[J]. Journal of China University of Mining & Technology, 49(4):742-754. (in Chinese with English abstract)
|
VAFAIE A, KIVI I R, 2020. An investigation on the effect of thermal maturity and rock composition on the mechanical behavior of carbonaceous shale formations[J]. Marine and Petroleum Geology, 116:104315. doi: 10.1016/j.marpetgeo.2020.104315
|
WANG S F, ZOU C N, DONG D Z, et al., 2014. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3):476-486. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ201403010.htm
|
WANG Y F, ZHAI G Y, WANG J Z, et al., 2017. Factors influencing gas production effectiveness of Longmaxi Formation shale in Sichuan Basin and adjacent areas[J]. Journal of Geomechanics, 23(4):540-547. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201704052.htm
|
WU H Z, XIONG L, GE Z W, et al., 2019. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin[J]. Natural Gas Industry, 39(3):11-20. (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/S2352854019300907
|
XIE H P, GAO F, ZHOU H W, et al., 2003. Fractal fracture and fragmentation in rocks[J]. Journal of Disaster Prevention and Mitigation Engineering, 23(4):1-9. (in Chinese with English abstract) http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Journal%20of%20Seismology&atitle=Fractal%20Fracture%20and%20Fragmentation%20in%20Rocks
|
XIE J, ZHAO S X, SHI X W, et al., 2017. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin[J]. Natural Gas Industry, 37(7):1-12. (in Chinese with English abstract) http://www.researchgate.net/publication/319662959_Main_geological_factors_controlling_high_production_of_horizontal_shale_gas_wells_in_the_Sichuan_Basin
|
XIU N L, YAN Y Z, DOU J J, et al., 2016. Fracture monitoring by surface tiltmeter in horizontal-well A pad in Changning, Sichuan[J]. Petroleum Geology and Engineering, 30(5):124-126, 129. (in Chinese with English abstract)
|
ZHOU J, ZHANG B P, LI K Z, et al., 2015. Fracture monitoring technology based on surface tiltmeter in "Well Factory" fracturing[J]. Petroleum Drilling Techniques, 43(3):71-75. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/syztjs201503014
|
YE G Q, CAO H, GAO Q, et al., 2019. Numerical simulation study on the influence of particle proportion on rock mechanics characteristics[J]. Journal of Geomechanics, 25(6):1129-1137. (in Chinese with English abstract)
|
YI J Z, BAO H Y, ZHENG A W, et al., 2019. Main factors controlling marine shale gas enrichment and high-yield wells in South China:A case study of the Fuling shale gas field[J]. Marine and Petroleum Geology, 103:114-125. doi: 10.1016/j.marpetgeo.2019.01.024
|
YU G, AGUILER R, 2012. 3D analytical modeling of hydraulic fracturing stimulated reservoir volume[C]//SPE Latin America and Caribbean petroleum engineering conference. Mexico City, Mexico: Society of Petroleum Engineers.
|
YUAN Y S, LIU J X, ZHOU Y, 2018. Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 39(5):899-906. (in Chinese with English abstract) http://www.researchgate.net/publication/330103745_Brittle-ductile_transition_zone_of_shale_and_its_implications_in_shale_gas_exploration
|
ZENG Z P, LIU Z, MA J, et al., 2019. A new method for fracrability evaluation in deep and tight sandstone reservoir[J]. Journal of Geomechanics, 25(2):223-232. (in Chinese with English abstract)
|
ZHANG C C, WANG Y M, DONG D Z, et al., 2016. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin[J]. Natural Gas Industry, 36(9):51-60. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-TRQG201609009.htm
|
ZHANG G Z, CHEN J J, CHEN H Z, et al., 2015. Prediction for in-situ formation stress of shale based on rock physics equivalent model[J]. Chinese Journal of Geophysics, 58(6):2112-2122. (in Chinese with English abstract)
|
ZHANG Y, YUAN X F, YAN T, et al., 2013. Influence of hydraulic fracture fractal propagation on fracturing result[J]. Petroleum Drilling Techniques, 41(4):101-104. (in Chinese with English abstract)
|
ZHAO J Z, REN L, HU Y Q, 2013. Controlling factors of hydraulic fractures extending into network in shale formations[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 35(1):1-9. (in Chinese with English abstract)
|
ZHAO J Z, XU W J, LI Y M, et al., 2015. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 26(6):1165-1172.
|
ZHAO J Z, REN L, SHEN C, et al., 2018. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 38(3):1-14. (in Chinese with English abstract)
|
ZHAO S X, YANG Y M, ZHANG J, et al., 2016. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 27(3):470-487. (in Chinese with English abstract)
|
ZHONG G H, CHEN L Q, LIAO M J, et al., 2020. A comprehensive logging evaluation method of shale gas reservoir quality[J]. Natural Gas Industry, 40(2):54-60. (in Chinese with English abstract)
|
陈建国, 邓金根, 袁俊亮, 等, 2015.页岩储层Ⅰ型和Ⅱ型断裂韧性评价方法研究[J].岩石力学与工程学报, 34(6):1101-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506003.htm
|
陈胜, 赵文智, 欧阳永林, 等, 2017.利用地球物理综合预测方法识别页岩气储层甜点:以四川盆地长宁区块下志留统龙马溪组为例[J].天然气工业, 37(5):20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201705005.htm
|
郭建春, 尹建, 赵志红, 2014.裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J].岩石力学与工程学报, 33(8):1589-1596. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408009.htm
|
纪国法, 李奎东, 张公社, 等, 2019.页岩Ⅰ型断裂韧性的分形计算方法与应用[J].岩土力学, 40(5):1925-1931. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905035.htm
|
纪国法, 李思辰, 李奎东, 等, 2020.基于平面应变和沿晶断裂条件下剪切滑移作用的页岩可压性评价方法[J].重庆大学学报, 43(4):25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202004003.htm
|
贾成业, 贾爱林, 何东博, 等, 2017.页岩气水平井产量影响因素分析[J].天然气工业, 37(4):80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704014.htm
|
金衍, 陈勉, 张旭东, 2001.利用测井资料预测深部地层岩石断裂韧性[J].岩石力学与工程学报, 20(4):454-556. doi: 10.3321/j.issn:1000-6915.2001.04.007
|
李双建, 周雁, 孙东胜, 2013.评价盖层有效性的岩石力学实验研究[J].石油实验地质, 35(5):574-578, 586. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201305020.htm
|
李双建, 金之钧, 袁玉松, 等, 2016.模拟地层条件下泥岩三轴应力实验及其油气意义[J].石油与天然气地质, 37(4):598-605. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604020.htm
|
刘惠民, 郑金凯, 赵文山, 等, 2019.深层致密砂岩储层脆性指数评价新方法[J].地质力学学报, 25(4):492-500. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190406&journal_id=dzlxxb
|
刘文平, 张成林, 高贵冬, 等, 2017.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报, 38(2):175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm
|
刘致水, 孙赞东, 2015.新型脆性因子及其在泥页岩储集层预测中的应用[J].石油勘探与开发, 42(1):117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501017.htm
|
牛露, 朱如凯, 王莉森, 等, 2015.华北地区北部中-上元古界泥页岩储层特征及页岩气资源潜力[J].石油学报, 36(6):664-672, 698. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506003.htm
|
任浩林, 刘成林, 刘文平, 等, 2020.四川盆地富顺-永川地区五峰组-龙马溪组应力场模拟及裂缝发育区预测[J].地质力学学报, 26(1):74-83. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200108&journal_id=dzlxxb
|
任岚, 林然, 赵金洲, 等, 2018.页岩气水平井增产改造体积评价模型及其应用[J].天然气工业, 38(8):47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201808011.htm
|
沈骋, 谢军, 赵金洲, 等, 2020.泸州-渝西区块海相页岩可压性演化差异[J].中国矿业大学学报, 49(4):742-754. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004012.htm
|
王淑芳, 邹才能, 董大忠, 等, 2014.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报(自然科学版), 50(3):476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201403010.htm
|
王玉芳, 翟刚毅, 王劲铸, 等, 2017.四川盆地及周缘龙马溪组页岩产气效果影响因素[J].地质力学学报, 23(4):540-547. doi: 10.3969/j.issn.1006-6616.2017.04.005
|
武恒志, 熊亮, 葛忠伟, 等, 2019.四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J].天然气工业, 39(3):11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201903003.htm
|
谢和平, 高峰, 周宏伟, 等, 2003.岩石断裂和破碎的分形研究[J].防灾减灾工程学报, 23(4):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200304000.htm
|
谢军, 赵圣贤, 石学文, 等, 2017.四川盆地页岩气水平井高产的地质主控因素[J].天然气工业, 37(7):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201707004.htm
|
周健, 张保平, 李克智, 等. 2015基于地面测斜仪的"井工厂"压裂裂缝监测技术[J].石油钻探技术, 43(3):71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201503015.htm
|
叶功勤, 曹函, 高强, 等, 2019.颗粒配比对岩石力学特征影响的数值模拟研究[J].地质力学学报, 25(6):1129-1137. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190614&journal_id=dzlxxb
|
袁玉松, 刘俊新, 周雁, 2018.泥页岩脆:延转化带及其在页岩气勘探中的意义[J].石油与天然气地质, 39(5):899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805006.htm
|
曾治平, 刘震, 马骥, 等, 2019.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 25(2):223-232. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190208&journal_id=dzlxxb
|
张晨晨, 王玉满, 董大忠, 等, 2016.四川盆地五峰组-龙马溪组页岩脆性评价与"甜点层"预测[J].天然气工业, 36(9):51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201609009.htm
|
张广智, 陈娇娇, 陈怀震, 等, 2015.基于页岩岩石物理等效模型的地应力预测方法研究[J].地球物理学报, 58(6):2112-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201506025.htm
|
张杨, 袁学芳, 闫铁, 等, 2013.水力裂缝分形扩展对压裂效果的影响[J].石油钻探技术, 41(4):101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201304024.htm
|
赵金洲, 任岚, 胡永全, 2013.页岩储层压裂缝成网延伸的受控因素分析[J].西南石油大学学报(自然科学版), 35(1):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201301000.htm
|
赵金洲, 许文俊, 李勇明, 等, 2015.页岩气储层可压性评价新方法[J].天然气地球科学, 26(6):1165-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201506021.htm
|
赵金洲, 任岚, 沈骋, 等, 2018.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业, 38(3):1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803001.htm
|
赵圣贤, 杨跃明, 张鉴, 等, 2016.四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J].天然气地球科学, 27(3):470-487. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603011.htm
|
钟光海, 陈丽清, 廖茂杰, 等, 2020.页岩气储层品质测井综合评价[J].天然气工业, 40(2):54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002008.htm
|