Volume 26 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
DONG Min, WANG Zongxiu, DONG Hui, et al., 2020. The characteristics and geological significance of highdensity methane-bearing inclusions in the Permian Gufeng Formation shale, southern Anhui. Journal of Geomechanics, 26 (6): 872-880. DOI: 10.12090/j.issn.1006-6616.2020.26.06.068
Citation: DONG Min, WANG Zongxiu, DONG Hui, et al., 2020. The characteristics and geological significance of highdensity methane-bearing inclusions in the Permian Gufeng Formation shale, southern Anhui. Journal of Geomechanics, 26 (6): 872-880. DOI: 10.12090/j.issn.1006-6616.2020.26.06.068

The characteristics and geological significance of highdensity methane-bearing inclusions in the Permian Gufeng Formation shale, southern Anhui

doi: 10.12090/j.issn.1006-6616.2020.26.06.068
More Information
  • Received: 2020-09-24
  • Revised: 2020-10-29
  • Published: 2020-12-01
  • Samples of quartz veins were collected from the Permian Gufeng Formation siliceous shale fractures along the Changqiao profile,Jingxian County in southern Anhui. Inclusion composition analysis,thermodynamic temperature measurement,and laser Raman spectroscopy were carried out on the samples,and high-density methane inclusions were detected. The measured displacements of laser Raman scattering peak v1 of the inclusions vary from 2910.6~2911.2 cm-1,and densities of the methane inclusions were calculated as 0.2295~0.2618 g/cm3,indicating characteristics of high-density methane inclusions. The two-phase vapor-liquid brine inclusions coexisting with the methane inclusions have homogenization temperatures ranging from 216.8 ℃ to 242.3 ℃. The combination of methane inclusion composition by laser Raman spectroscopy with the simulation of high-density methane inclusions using the equation of state of supercritical methane system shows that the trapping pressure at 216.8 ℃ was 76~95 MPa. By calculating the density of the high-density methane inclusion and the capture pressure,it reveals the evidence for high-pressure methane yield in the Permian Gufeng Formation highly evolved siliceous shale in geological history,and provides scientific grounds for the exploration and evaluation of Permian shale gas in southern Anhui.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CHEN Y, ZHOU Y Q, YAN S Y, et al., 2006. The application of laser Raman spectroscopy to obtaining internal pressure of fluid inclusions[J]. Acta Geoscientica Sinica, 27(1):69-73. (in Chinese with English abstract)
    CHEN Y, ZHOU Y Q, ZHANG L P, et al., 2007. Discovery of CH4-rich high-pressure fluid inclusions hosted in analcime from Dongying depression, China[J]. Journal of Petroleum Science and Engineering, 56(4):311-314. doi: 10.1016/j.petrol.2006.10.005
    DUAN Z H, MØLLER N, GREENBERG J, et al., 1992a. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar[J]. Geochimica et Cosmochimica Acta, 56(4):1451-1460. doi: 10.1016/0016-7037(92)90215-5
    DUAN Z H, MØLLER N, WEARE J H, 1992b. Molecular dynamics simulation of PVT properties of geological fluids and a general equation of state of nonpolar and weakly polar gases up to 2000 K and 20, 000 bar[J]. Geochimica et Cosmochimica Acta, 56(10):3839-3845. doi: 10.1016/0016-7037(92)90175-I
    GAO J, HE S, YI J Z, 2015. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 36(3):472-480. (in Chinese with English abstract)
    GAO J, ZHANG J K, HE S, et al., 2019. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China:implications for shale gas accumulation[J]. Marine and Petroleum Geology, 102:844-859. doi: 10.1016/j.marpetgeo.2019.01.032
    GOLDSTEIN R H, REYNOLDS T J, 1994. Systematics of fluid inclusions in diagenetic minerals[M]. Tulsa, USA:Society for Sedimentary Geology:199.
    GUO T L, 2016. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 43(3):317-326. (in Chinese with English abstract)
    HANSEN S B, BERG R W, STENBY E H, 2001a. High-pressure measuring cell for Raman spectroscopic studies of natural gas[J]. Applied Spectroscopy, 55(1):55-60. doi: 10.1366/0003702011951434
    HANSEN S B, BERG R W, STENBY E H, 2001b. Raman spectroscopic studies of methane-ethane mixtures as a function of pressure[J]. Applied Spectroscopy, 55(6):745-749. doi: 10.1366/0003702011952442
    HU D F, ZHANG H R, NI K, et al., 2014. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 34(6):17-23. (in Chinese with English abstract)
    HU S Z, 2000. New Consideration of Gufeng formation by stratigraphy check up[J]. Volcanology & Mineral Resources, 21(1):63-68. (in Chinese with English abstract)
    HUANG B J, SHI R F, ZHAO X B, et al., 2013. Geological conditions of Paleozoic shale gas formation and its exploration potential in the South Anhui, Lower Yangtze area[J]. Journal of China Coal Society, 38(5):877-882. (in Chinese with English abstract)
    LI W, HE S, ZHANG B Q, et al., 2018. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba anticline[J]. Acta Petrolei Sinica, 39(4):402-415. (in Chinese with English abstract)
    LI Y H, DUAN H L, TAN Y, 2010. Structural division of marine Mesozoic-Paleozoic in Lower Yangtze region and its significance for petroleum exploration targets[J]. Journal of Geomechanics, 16(3):271-280. (in Chinese with English abstract)
    LIU B, SHEN K, 1999. Thermodynamics of fluid inclusions[M]. Beijing:Geological Publishing House:27-83. (in Chinese)
    LIU D H, DAI J X, XIAO X M, et al., 2009. High density methane inclusions in Puguang Gasfield:Discovery and a T-P genetic study[J]. Chinese Science Bulletin, 54(24):4714-4723.
    LIU D H, XIAO X M, TIAN H, et al., 2013. Multiple types of high density methane inclusions and their relationships with exploration and assessment of oil-cracked gas and shale gas discovered in NE Sichuan[J]. Earth Science Frontiers, 20(1):64-71. (in Chinese with English abstract)
    LIU H L, WANG H Y, FANG C H, et al., 2016. The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China[J]. Earth Science Frontiers, 23(2):48-54. (in Chinese with English abstract)
    LIU R B, 2015. Analyses of influences on shale reservoirs of Wufeng-Longmaxi formation by overpressure in the south-eastern Part of Sichuan basin[J]. Acta Sedimentologica Sinica, 33(4):817-827. (in Chinese with English abstract)
    LU H Z, FAN H R, NI P, et al., 2004. Fluid inclusion[M]. Beijing:Science Press:230-239. (in Chinese)
    LU W J, CHOU I M, BURRUSS R C, et al., 2007. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. Geochimica et Cosmochimica Acta, 71(16):3969-3978. doi: 10.1016/j.gca.2007.06.004
    OU G X, LI L Q, SUN Y M, 2006. Theory and application of the fluid inclusion research on the sedimentary basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 25(1):1-11. (in Chinese with English abstract)
    PING H W, CHEN H H, RÉGIS T, 2014. Prediction model of petroleum inclusion trapping pressure constrained by methane mole content[J]. Earth Science-Journal of China University of Geosciences, 39(1):79-90. (in Chinese with English abstract) doi: 10.3799/dqkx.2014.008
    SEITZ J C, PASTERIS J D, CHOU I M, 1993a. Raman spectroscopic characterization of gas mixtures; I, Quantitative composition and pressure determinatioin of CH4, N2 and their mixtures[J]. American Journal of Science, 293(4):297-321. doi: 10.2475/ajs.293.4.297
    SEITZ J C, PASTERIS J D, CHOU I M, 1996. Raman spectroscopic characterization of gas mixtures; Ⅱ, Quantitative composition and pressure determination of the CO2-CH4 system[J]. American Journal of Science, 296(6):577-600. doi: 10.2475/ajs.296.6.577
    SEITZ J C, PASTERIS J D, MORGAN G B, 1993b. Quantitative analysis of mixed volatile fluids by Raman microprobe spectroscopy-a cautionary note on spectral resolution and peak shape[J]. Applied Spectroscopy, 47(6):816-820. doi: 10.1366/0003702934067045
    SHI W J, XI B B, 2016. Calculation of paleo-pressure in gas reservoirs using fluid inclusions[J]. Petroleum Geology and Experiment, 38(1):128-134. (in Chinese with English abstract)
    SI S H, ZHAO J Z, MENG Q A, et al., 2018. The fluid inclusion Paleo pressure characteristics and geological implications of Gaotaizi tight reservoir in Qijia area of Songliao basin[J]. Journal of Geomechanics, 24(1):51-59. (in Chinese with English abstract)
    SONG T, CHEN K, LIN T, et al., 2019. Study on geological conditions of upper Permian shale oil and gas in Lower Yangtze area of southern Jiangsu-Anhui Province[J]. Geological Survey of China, 6(2):18-25. (in Chinese with English abstract)
    SONG T, LIN T, CHEN K, et al., 2017. The discovery of shale gas in Upper Permian transitional facies at Jingye-1 well in Lower Yangtze region[J]. Geology in China, 44(3):606-607. (in Chinese with English abstract)
    THOMAS A V, PASTERIS J D, BRAY C J, et al., 1990. H2O-CH4-NaCl-CO2 inclusions from the footwall contact of the Tanco granitic pegmatite:Estimates of internal pressure and composition from microthermometry, laser Raman spectroscopy, and gas chromatography[J]. Geochimica et Cosmochimica Acta, 54(3):559-573. doi: 10.1016/0016-7037(90)90353-M
    XI B B, TENGER, YU L J, et al., 2016. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 38(4):473-479. (in Chinese with English abstract)
    XU F F, ZHANG X H, HUANG Z Q, et al., 2019. Characteristics of the Dalong and Gufeng Formation shale reservoirs in Ningguo depression, lower Yangtze Region, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2):180-190. (in Chinese with English abstract)
    XU W L, HU S Y, LI N X, et al., 2019. Characteristics and exploration directions of inner gas source from the middle assemblage of Ordovician in Ordos Basin[J]. Acta Petrolei Sinica, 40(8):900-913. (in Chinese with English abstract)
    YAN L Y, ZHENG Y, WANG C M, et al., 2019. Application of fluid inclusions methodology in the shale gas study:A review[J]. Journal of Geomechanics, 25(S1):103-107. (in Chinese with English abstract)
    陈勇, 周瑶琪, 颜世永, 等, 2006.激光拉曼光谱技术在获取流体包裹体内压中的应用及讨论[J].地球学报, 27(1):69-73. doi: 10.3321/j.issn:1006-3021.2006.01.010
    高键, 何生, 易积正, 2015.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J].石油与天然气地质, 36(3):472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm
    郭彤楼, 2016.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发, 43(3):317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm
    胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素[J].天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003
    胡世忠, 2000.对孤峰组的新认识[J].火山地质与矿产, 21(1):63-68. doi: 10.3969/j.issn.1671-4814.2000.01.010
    黄保家, 施荣富, 赵幸滨, 等, 2013.下扬子皖南地区古生界页岩气形成条件及勘探潜力评价[J].煤炭学报, 38(5):877-882. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305030.htm
    李文, 何生, 张柏桥, 等, 2018.焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J].石油学报, 39(4):402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm
    李亚辉, 段宏亮, 谈迎, 2010.下扬子区海相中、古生界地质结构分区及其油气勘探选区意义[J].地质力学学报, 16(3):271-280. doi: 10.3969/j.issn.1006-6616.2010.03.005
    刘斌, 沈昆, 1999.流体包裹体热力学[M].北京:地质出版社:27-83.
    刘德汉, 戴金星, 肖贤明, 等, 2010.普光气田中高密度甲烷包裹体的发现及形成的温度和压力条件[J].科学通报, 55(4):359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z1010.htm
    刘德汉, 肖贤明, 田辉, 等, 2013.论川东北地区发现的高密度甲烷包裹体类型与油裂解气和页岩气勘探评价[J].地学前缘, 20(1):64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301008.htm
    刘洪林, 王红岩, 方朝合, 等, 2016.中国南方海相页岩气超压机制及选区指标研究[J].地学前缘, 23(2):48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htm
    刘若冰, 2015.超压对川东南地区五峰组-龙马溪组页岩储层影响分析[J].沉积学报, 33(4):817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201504022.htm
    卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体[M].北京:科学出版社:230-239.
    欧光习, 李林强, 孙玉梅, 2006.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学通报, 25(1):1-11. doi: 10.3969/j.issn.1007-2802.2006.01.001
    平宏伟, 陈红汉, RÉGIS T, 2014.甲烷摩尔含量约束的石油包裹体捕获压力预测模型[J].地球科学-中国地质大学学报, 39(1):79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201401009.htm
    施伟军, 席斌斌, 2016.应用包裹体技术恢复气藏古压力[J].石油实验地质, 38(1):128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601019.htm
    斯尚华, 赵靖舟, 蒙启安, 等, 2018.松辽盆地齐家地区高台子致密油层包裹体古流体压力特征及其地质意义[J].地质力学学报, 24(1):51-59. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180106&journal_id=dzlxxb
    宋腾, 林拓, 陈科, 等, 2017.下扬子皖南地区上二叠统(泾页1井)发现海陆过渡相页岩气[J].中国地质, 44(3):606-607. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703017.htm
    宋腾, 陈科, 林拓, 等, 2019.下扬子苏皖南地区上二叠统页岩油气地质条件研究[J].中国地质调查, 6(2):18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201902002.htm
    席斌斌, 腾格尔, 俞凌杰, 等, 2016.川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J].石油实验地质, 38(4):473-479. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604009.htm
    徐菲菲, 张训华, 黄正清, 等, 2019.下扬子地区宁国凹陷大隆组-孤峰组泥页岩储层特征[J].成都理工大学学报(自然科学版), 46(2):180-190. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201902006.htm
    徐旺林, 胡素云, 李宁熙, 等, 2019.鄂尔多斯盆地奥陶系中组合内幕气源特征及勘探方向[J].石油学报, 40(8):900-913. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908002.htm
    严礼宇, 郑义, 王成明, 等, 2019.流体包裹体方法在页岩气研究中的应用[J].地质力学学报, 25(S1):103-107. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S117&journal_id=dzlxxb
  • 加载中

Catalog

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (244) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return