Volume 26 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
LIANG Mingliang, WANG Zongxiu, LI Chunlin, et al., 2020. Effect of structural deformation on permeability evolution of marine shale reservoirs. Journal of Geomechanics, 26 (6): 840-851. DOI: 10.12090/j.issn.1006-6616.2020.26.06.066
Citation: LIANG Mingliang, WANG Zongxiu, LI Chunlin, et al., 2020. Effect of structural deformation on permeability evolution of marine shale reservoirs. Journal of Geomechanics, 26 (6): 840-851. DOI: 10.12090/j.issn.1006-6616.2020.26.06.066

Effect of structural deformation on permeability evolution of marine shale reservoirs

doi: 10.12090/j.issn.1006-6616.2020.26.06.066
More Information
  • Received: 2019-08-15
  • Revised: 2020-05-27
  • Published: 2020-12-01
  • Compared to North America,the geological conditions of marine shale reservoirs in South China are highly diversified and complicated due to the multi-tectonic movement,which transformed the structure of shale seams and resulted in structural deformed shale with unique reservoir properties. To investigate the effect of structural deformation on shale permeability,we experimentally examined the impacts of mineralogy,structural and fabric properties,and effective pressure on permeability evolution using two sets of undeformed shales(U) and deformed shales(D) collected from the Wufeng-Longmaxi Formations in the Upper Yangtze Block. Experimental analysis showed that the permeability between 0.2 and 2.69 millidarcies (mD) of strongly deformed shale samples were three orders of magnitude higher than the permeability (between 1.5×10-4 and 1.7×10-3 mD) of undeformed and slightly deformed shale samples. Meanwhile,strong deformation also reduces the pressure sensitivity of shale permeability when effective pressure increases from 700 PSI to 1200 PSI. These results indicated that accompanied by strong tectonic deformation,the shale permeability improved significantly,ant it would contribute to the development of macropore and micro-crack in the strong deformed shale samples. Moreover,the implications of permeability evolution with structural deformation is presented as that it would conducive to the transport and accumulation of shale gas,and may also lead to the leakage of shale gas in areas with poor seal conditions under the geological conditions of tectonic complex areas in South China.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BARENBLATT G I, ZHELTOV I P, KOCHINA I N, 1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[strata]Ob osnovnykh predstavleniiakh teorii fil'tratsii odnorodnykh zhidkostei v treshchinovatykh porodakh:PMM vol.24, no.5, 1960, pp. 852-864[J]. Journal of Applied Mathematics and Mechanics, 24(5):1286-1303. doi: 10.1016/0021-8928(60)90107-6
    BERNABÉ Y, MOK U, EVANS B, 2003. Permeability-porosity relationships in rocks subjected to various evolution processes[J]. Pure and Applied Geophysics, 160(5):937-960. doi: 10.1007/PL00012574
    CAI J C, LIN D L, SINGH H, et al., 2019. A simple permeability model for shale gas and key insights on relative importance of various transport mechanisms[J]. Fuel, 252:210-219. doi: 10.1016/j.fuel.2019.04.054
    CHALMERS G R, BUSTIN R M, POWER I M, 2012a. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 96(6):1099-1119. doi: 10.1306/10171111052
    CHALMERS G R L, ROSS D J K, BUSTIN R M, 2012b. Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 103:120-131. doi: 10.1016/j.coal.2012.05.006
    CLARKSON C R, HAGHSHENAS B, GHANIZADEH A, et al., 2016. Nanopores to megafractures:current challenges and methods for shale gas reservoir and hydraulic fracture characterization[J]. Journal of Natural Gas Science and Engineering, 31:612-657. doi: 10.1016/j.jngse.2016.01.041
    DAVIS G H, REYNOLDS S J, KLUTH S F, 2012. Structural geology of rocks and regions[M]. 3rd ed. New York:Wiley:135-598.
    DOOLIN D M, MAULDON M, 2001. Fracture permeability normal to bedding in layered rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 38(2):199-210. doi: 10.1016/S1365-1609(00)00056-3
    GAO J, LI Z X, 2018. Water saturation-driven evolution of helium permeability in Carboniferous shale from Qaidam Basin, China:an experimental study[J]. Marine and Petroleum Geology, 96:371-390. doi: 10.1016/j.marpetgeo.2018.05.028
    GHANIZADEH A, GASPARIK M, AMANN-HILDENBRAND A, et al., 2014a. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales:I. Scandinavian Alum Shale[J]. Marine and Petroleum Geology, 51:79-99. doi: 10.1016/j.marpetgeo.2013.10.013
    GHANIZADEH A, AMANN-HILDENBRAND A, GASPARIK M, et al., 2014b. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales:Ⅱ. Posidonia Shale (Lower Toarcian, northern Germany)[J]. International Journal of Coal Geology, 123:20-33. doi: 10.1016/j.coal.2013.06.009
    GUO T L, ZHANG H R, 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 41(1):28-36. (in Chinese with English abstract) http://www.cnki.com.cn/article/cjfdtotal-skyk201401003.htm
    GUO T L, 2016. Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers, 23(1):29-43. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXQY201601005.htm
    GUO X S, HU D F, WEI X F, et al., 2016. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 37(6):799-808. (in Chinese with English abstract)
    GUO Y Y, LIANG M L, WANG Z X, et al., 2019. Organic geochemistry and mineral composition characteristics in Shales of Niutitang formation, northwestern Hunan[J]. Journal of Geomechanics, 25(3):392-399. (in Chinese with English abstract) http://www.cqvip.com/QK/98414X/20193/7002243788.html
    HE J L, WANG J, YU Q, et al., 2018. Discovery of exogenous type shale gas and its geological significance to hydrocarbon exploration[J]. Acta Petrolei Sinica, 39(1):12-22. (in Chinese with English abstract) doi: 10.1038/aps.2017.83
    HE J L, WANG J, YU Q, et al., 2018a. Pore structure of shale and its effects on gas storage and transmission capacity in well HD-1 eastern Sichuan Basin, China[J]. Fuel, 226:709-720. doi: 10.1016/j.fuel.2018.04.072
    HE W G, ZHOU J X, YUAN K, 2018b. Deformation evolution of Eastern Sichuan-Xuefeng fold-thrust belt in South China:insights from analogue modelling[J]. Journal of Structural Geology, 109:74-85. doi: 10.1016/j.jsg.2018.01.002
    HOEK E, MARTIN C D, 2014. Fracture initiation and propagation in intact rock-A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 6(4):287-300. doi: 10.1016/j.jrmge.2014.06.001
    HU D F, ZHANG H R, NI K, 2014. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 34(6):17-23. (in Chinese with English abstract)
    HU D F, 2019. Main controlling factors on normal pressure shale gas enrichmentsin Wufeng-Longmaxi Formations in synclines, southeastern Sichuan Basin[J]. Natural Gas Geoscience, 30(5):605-615. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-TDKX201905001.htm
    JARVIE D M, HILL R J, RUBLE T E, et al., 2007. Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 91(4):475-499. doi: 10.1306/12190606068
    JIANG Z X, SONG Y, TANG X L, et al., 2020. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 47(3):1-12. (in Chinese with English abstract) http://www.researchgate.net/publication/342296679_Controlling_factors_of_marine_shale_gas_differential_enrichment_in_southern_China
    KAZEMI H, 1969. Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution[J]. Society of Petroleum Engineers Journal, 9(4):451-462. doi: 10.2118/2156-A
    LI M H, YIN G Z, XU J, et al., 2016. Permeability evolution of shale under anisotropic true triaxial stress conditions[J]. International Journal of Coal Geology, 165:142-148. doi: 10.1016/j.coal.2016.08.017
    LIANG M L, WANG Z X, GAO L, et al., 2017. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 197:310-319. doi: 10.1016/j.fuel.2017.02.035
    LIU C, YIN G Z, LI M H, et al., 2019. Shale permeability model considering bedding effect under true triaxial stress conditions[J]. Journal of Natural Gas Science and Engineering, 68:102908. doi: 10.1016/j.jngse.2019.102908
    LIU S G, DENG B, ZHONG Y, et al., 2016. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 23(1):11-28. (in Chinese with English abstract)
    LOUCKS R G, REED R M, RUPPEL S C, et al., 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96(6):1071-1098. doi: 10.1306/08171111061
    LUO Q Y, ZHONG N N, DAI N, et al., 2016. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China:Implications for gas shale evaluation[J]. International Journal of Coal Geology, 153:87-98. doi: 10.1016/j.coal.2015.11.014
    MA Y, ARDAKANI O H, ZHONG N N, et al., 2020. Possible pore structure deformation effects on the shale gas enrichment:an example from the lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology, 217:103349. doi: 10.1016/j.coal.2019.103349
    MARTIN C D, CHANDLER N A, 1994. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(6):643-659. http://www.sciencedirect.com/science/article/pii/0148906294900051
    QIU Z, ZOU C N, WANG H Y, et al., 2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 31(2):163-175. (in Chinese with English abstract)
    SHU Y, LU Y C, BAO H Y, et al., 2018. Three typical types of shale gas preservation in the Fuling Shale Gas Field, Sichuan Basin[J]. Natural Gas Industry, 38(3):31-40. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_natural-gas-industry_thesis/0201218475394.html
    SING K S W, EVERETT D H, HAUL R A W, et al., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry, 57(4):603-619. doi: 10.1351/pac198557040603
    SLATT R M, O'BRIEN N R, 2011. Pore types in the Barnett and Woodford gas Shales:contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 95(12):2017-2030. doi: 10.1306/03301110145
    SUN J, LUO B, 2016. Structural deformation and its influences on gas storage in Fuling shale gas play, the Sichuan Basin[J]. Oil & Gas Geology, 37(6):809-818. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/syytrqdz201606002
    TANG C A, THAM L G, LEE P K K, et al., 2002. Coupled analysis of Flow, Stress and Damage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 39(4):477-489. doi: 10.1016/S1365-1609(02)00023-0
    THOMMES M, KANEKO K, NEIMARK A V, et al., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure & Applied Chemistry, 87(9-10):1051-1069.
    WANG G C, 2020. Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin, 104(1):21-36. http://www.researchgate.net/publication/338394921_deformation_of_organic_matter_and_its_effect_on_pores_in_mud_rocks
    WANG S F, DONG D Z, WANG Y M, et al., 2015. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 26(9):1666-1678. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201509008.htm
    WANG Y M, HUANG J L, WANG S F, et al., 2016. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 27(3):423-432. (in Chinese with English abstract) http://www.cqvip.com/QK/97226X/201603/668695574.html
    WANG Z X, ZHANG J, GUAN H M, et al., 2012. A discussion on the structural deformation and oil/gas traps on the western side of the Xuefeng Mountain[J]. Geological Bulletin of China, 31(11):1812-1825. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201211007.htm
    WANG Z X, LI C L, LI H J, et al., 2019. Tectonic architecture and evolution of the Eastern Sichuan-Wulingshan area, South China[J]. Journal of Geomechanics, 25(5):827-839. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905013.htm
    WU Y S, LI J F, DING D, et al., 2014. A generalized framework model for the simulation of gas production in unconventional gas reservoirs[J]. SPE Journal, 19(5):845-857. doi: 10.2118/163609-PA
    ZHAI G Y, WANG Y F, ZHOU Z, et al., 2018a. Exploration and research progress of shale gas in China[J]. China Geology, 1(2):257-272. doi: 10.31035/cg2018024
    ZHAI G Y, WANG Y F, ZHOU Z, et al., 2018b. "Source-Diagenesis-Accumulation" enrichment and accumulation regularity of marine shale gas in southern China[J]. China Geology, 1(3):319-330. doi: 10.31035/cg2018059
    ZHANG J C, JIN Z J, YUAN M S, 2004. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 24(7):15-18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200407004.htm
    ZHANG X M, SHI W Z, XU Q H, et al., 2015. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area, Sichuan Basin[J]. Acta Petrolei Sinica, 36(8):926-939, 953. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYXB201508004.htm
    ZHENG Y J, LIAO Y H, WANG Y P, et al., 2018. Organic geochemical characteristics, mineralogy, petrophysical properties, and shale gas prospects of the Wufeng-Longmaxi Shales in Sanquan Town of the Nanchuan District, Chongqing[J]. AAPG Bulletin, 102(11):2239-2265. doi: 10.1306/04241817065
    ZHU H J, JU Y W, QI Y, et al., 2018. Impact of tectonism on pore type and pore structure evolution in organic-rich shale:Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 228:272-289. doi: 10.1016/j.fuel.2018.04.137
    ZHU H J, JU Y W, HUANG C, et al., 2019. Petrophysical properties of the major marine shales in the Upper Yangtze Block, south China:a function of structural deformation[J]. Marine and Petroleum Geology, 110:768-786. doi: 10.1016/j.marpetgeo.2019.08.003
    ZHU H J, JU Y W, HUANG C, et al., 2020. Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale[J]. Energy, 197:117256. doi: 10.1016/j.energy.2020.117256
    ZOU C N, ZHU R K, CHEN Z Q, et al., 2019. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 189:51-78. doi: 10.1016/j.earscirev.2018.12.002
    郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 41(1):28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
    郭彤楼, 2016.涪陵页岩气田发现的启示与思考[J].地学前缘, 23(1):29-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601005.htm
    郭旭升, 胡东风, 魏祥峰, 等, 2016.四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J].石油与天然气地质, 37(6):799-808. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606002.htm
    郭永岩, 梁明亮, 王宗秀, 等, 2019.湘西北地区下寒武统牛蹄塘组页岩有机地球化学与矿物组成特征[J].地质力学学报, 25(3):392-399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903006.htm
    何江林, 王剑, 余谦, 等, 2018.外源补给型页岩气的发现及油气地质意义[J].石油学报, 39(1):12-22. doi: 10.3969/j.issn.1671-4067.2018.01.004
    胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素[J].天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003
    胡东风, 2019.四川盆地东南缘向斜构造五峰组-龙马溪组常压页岩气富集主控因素[J].天然气地球科学, 30(5):605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm
    姜振学, 宋岩, 唐相路, 等, 2020.中国南方海相页岩气差异富集的控制因素[J].石油勘探与开发, 47(3):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm
    刘树根, 邓宾, 钟勇, 等, 2016.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J].地学前缘, 23(1):11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm
    邱振, 邹才能, 王红岩, 等, 2020.中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素[J].天然气地球科学, 31(2):163-175. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002002.htm
    舒逸, 陆永潮, 包汉勇, 等, 2018.四川盆地涪陵页岩气田3种典型页岩气保存类型[J].天然气工业, 38(3):31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803005.htm
    孙健, 罗兵, 2016.四川盆地涪陵页岩气田构造变形特征及对含气性的影响[J].石油与天然气地质, 37(6):809-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606004.htm
    王淑芳, 董大忠, 王玉满, 等, 2015.中美海相页岩气地质特征对比研究[J].天然气地球科学, 26(9):1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm
    王玉满, 黄金亮, 王淑芳, 等, 2016.四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J].天然气地球科学, 27(3):423-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603006.htm
    王宗秀, 张进, 关会梅, 等, 2012.雪峰山西侧地区构造形变与油气圈闭[J].地质通报, 31(11):1812-1825. doi: 10.3969/j.issn.1671-2552.2012.11.006
    王宗秀, 李春麟, 李会军, 等, 2019.川东-武陵地区构造格局及其演化[J].地质力学学报, 25(5):827-839. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190512&journal_id=dzlxxb
    张金川, 金之钧, 袁明生, 2004.页岩气成藏机理和分布[J].天然气工业, 24(7):15-18. doi: 10.3321/j.issn:1000-0976.2004.07.005
    张晓明, 石万忠, 徐清海, 等, 2015.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报, 36(8):926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm
  • 加载中

Catalog

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (273) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return