Citation: | YANG Jingsui, 2020. Diamond in oceanic peridotites-chromitites and recycled in deep mantle. Journal of Geomechanics, 26 (5): 731-741. DOI: 10.12090/j.issn.1006-6616.2020.26.05.060 |
ARAI S, 1997. Origin of podiform chromitites[J]. Journal of Asian Earth Sciences, 15(2-3):303-310. doi: 10.1016/S0743-9547(97)00015-9
|
ARAI S, 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling:A good inference[J]. Earth and Planetary Science Letters, 379:81-87. doi: 10.1016/j.epsl.2013.08.006
|
BAI W J, ZHOU M F, ROBINSON P T, 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 30(8):1650-1659. doi: 10.1139/e93-143
|
BALLHAUS C, WIRTH R, FONSECA R O C, et al., 2017. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes[J]. Geochemical Perspectives Letters, 5:42-46.
|
BERCOVICI D, KARATO S I, 2003. Whole-mantle convection and the transition-zone water filter[J]. Nature, 425(6953):39-44. doi: 10.1038/nature01918
|
BUSLOV M M, SAPHONOVA Y I, WATANABE T, et al., 2001. Evolution of the paleo-asian ocean (altai-sayan region, central asia) and collision of possible gondwana-derived terranes with the southern marginal part of the siberian continent[J]. Geosciences Journal, 5(3):203-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000904746
|
BUTLER J P, BEAUMONT C, 2017. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 463:101-117. doi: 10.1016/j.epsl.2017.01.025
|
CARTIGNY P, 2005. Stable isotopes and the origin of diamond[J]. Elements, 1(2):79-84. doi: 10.2113/gselements.1.2.79
|
CARTIGNY P, DE CORTE K, SHATSKY V S, et al., 2001. The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan:a nitrogen and carbon isotopic study[J]. Chemical Geology, 176(1-4):265-281. doi: 10.1016/S0009-2541(00)00407-1
|
CHICHEST INC, 1997. There are no primary or residual diamonds in the mantle peridotite of Lobusa or Dongqiao, Tibet[J] Tibet Geology, (1):103-112. (in Chinese)
|
COLEMAN R G, 2014. The ophiolite concept evolves[J]. Elements, 10(2):82-84. doi: 10.2113/gselements.10.2.82
|
CONDIE K C, 2018. A planet in transition:The onset of plate tectonics on Earth between 3 and 2 Ga?[J]. Geoscience Frontiers, 9(1):51-60. DOI: 10.1016/j.gsf.2016.09.001.
|
COURTILLOT V, DAVAILLE A, BESSE J, et al., 2003. Three distinct types of hotspots in the Earth's mantle[J]. Earth and Planetary Science Letters, 205(3-4):295-308. doi: 10.1016/S0012-821X(02)01048-8
|
DAS S, BASU A R, MUKHERJEE B K, 2017. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone[J]. Geology, 45(8):755-758. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=130eb64126710cf80addf1c9432fe795
|
DAS S, MUKHERJEE B K, BASU A R, et al., 2015. Peridotitic minerals of the Nidar Ophiolite in the NW Himalaya:sourced from the depth of the mantle transition zone and above[J]. Geological Society, London, Special Publications, 412(1):271-286. doi: 10.1144/SP412.12
|
DE PABLO J F, PROENZA J A, GONZÁLEZ-JIMÉNEZ J M, et al., 2018. A shallow origin for diamonds in ophiolitic chromitites[J]. Geology, 47(1):75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd934e60abe87e368776f016533c7475
|
DENG Z B, CHAUSSIDON M, GUITREAU M, et al., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes[J]. Nature Geoscience, 12(9):774-778. doi: 10.1038/s41561-019-0407-6
|
DILEK Y, FURNES H, 2011. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123(3-4):387-411. doi: 10.1130/B30446.1
|
DILEK Y, FURNES H, 2014. Ophiolites and their origins[J]. Elements, 10(2):93-100. doi: 10.2113/gselements.10.2.93
|
DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(46):19233-19238. doi: 10.1073/pnas.0905514106
|
DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2014. Qingsongite, natural cubic boron nitride:the first boron mineral from the Earth's mantle[J]. American Mineralogist, 99(4):764-772. doi: 10.2138/am.2014.4714
|
DRESSER J A, 1913. Preliminary report on the serpentine and associated rocks of southern Quebec[R]. Geological Survey of Canada, 103. DOI: 10.1017/S0016756800153531.
|
FURNES H, DE WIT M, STAUDIGEL H, et al., 2007. A vestige of earth's oldest ophiolite[J]. Science, 315(5819):1704-1707. doi: 10.1126/science.1139170
|
GASS I G, 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor?[J]. Nature, 220(5162):39-42. doi: 10.1038/220039a0
|
GRAND S P, VAN DER HILST R D, WIDIYANTORO S, 1997. Global Seismic Tomography:A Snapshot of Convection in the Earth[J]. Geological Society of America Today, 7(4):1-7.
|
GRIFFIN W L, AFONSO J C, BELOUSOVA E A, et al., 2016. Mantle recycling:transition zone metamorphism of tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57(4):655-684. doi: 10.1093/petrology/egw011
|
HIROSE K, FEI Y W, MA Y Z, et al., 1999. The fate of subducted basaltic crust in the Earth's lower mantle[J]. Nature, 397(6714):53-56. doi: 10.1038/16225
|
HOWELL D, GRIFFIN W L, YANG J S, et al., 2015. Diamonds in ophiolites:Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 430:284-295. doi: 10.1016/j.epsl.2015.08.023
|
HUANG Z, YANG J S, ROBINSON P T, et al., 2015. The Discovery of diamonds in chromitites of the hegenshan Ophiolite, inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 892(2):341-350.
|
LAMBERT I B, WYLLIE P J, 1970. Low-velocity zone of the Earth's mantle:incipient melting caused by water[J]. Science, 169(3947):764-766. doi: 10.1126/science.169.3947.764
|
LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-cenozoic tectonic evolution and plate reconstruction of the pacific plate[J]. Journal of Geomechanics, 25(5):642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060..
|
LI Z Y, LI J, LANGE R, et al., 2017. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle[J]. Earth and Planetary Science Letters, 457:395-402. doi: 10.1016/j.epsl.2016.10.027
|
LIAN D Y, YANG J S, DILEK Y, et al., 2017. Deep mantle origin and ultra-reducing conditions in podiform chromitite:Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey[J]. American Mineralogist, 102(5):1101-1113.
|
LIAN D Y, YANG J S, WIEDENBECK M, et al., 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey[J]. Contributions to Mineralogy and Petrology, 173:72. doi: 10.1007/s00410-018-1499-5
|
LIAN D Y, YANG J S, LIU F, et al., 2019. Diamond Classification, Compositional Characteristics, and Research Progress:A Review[J]. Earth Science, 044(010):P.3409-3453.
|
LIAN D Y, YANG J S. 2019. Ophiolite-Hosted Diamond:A New Window for Probing Carbon Cycling in the Deep Mantle[J]. Engineering, 5(3):351-594. doi: 10.1016/j.eng.2019.05.002
|
LIOU J G, ERNST W G, ZHANG R Y, et al., 2009. Ultrahigh-pressure minerals and metamorphic terranes-The view from China[J]. Journal of Asian Earth Sciences, 35(3-4):199-231. doi: 10.1016/j.jseaes.2008.10.012
|
LIOU J G, TSUJIMORI T, YANG J S, et al., 2014. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths:a review[J]. Journal of Asian Earth Sciences, 96:386-420. doi: 10.1016/j.jseaes.2014.09.011
|
LITASOV K D, KAGI H, VOROPAEV S A, et al., 2019. Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials[J]. Gondwana Research, 75:16-27. doi: 10.1016/j.gr.2019.04.007
|
LIU H, SUN W D, ZARTMAN R, et al., 2019. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago[J]. Nature Communications, 10:3408. doi: 10.1038/s41467-019-11329-z
|
LIU J, HU Q Y, KIM D Y, et al., 2017. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones[J]. Nature, 551(7681):494-497. doi: 10.1038/nature24461
|
LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6):1003-1012.DOI: 10.12090/j.issn.1006-6616.2019.25.06.083.
|
MAO H K, HU Q Y, YANG L X, et al., 2017. When water meets iron at Earth's core-mantle boundary[J]. National Science Review, 4(6):870-878. doi: 10.1093/nsr/nwx109
|
MOE K S, YANG J S, JOHNSON P, et al., 2018. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite[J]. Lithosphere, 10(1):133-141.
|
NAKAGAWA M, SANTOSH M, MARUYAMA S, 2011. Manganese formations in the accretionary belts of Japan:Implications for subduction-accretion process in an active convergent margin[J]. Journal of Asian Earth Sciences, 42(3):208-222. doi: 10.1016/j.jseaes.2011.04.005
|
NICOLAS A, 1989. Structures of ophiolites and dynamics of oceanic lithosphere[M]. Netherlands:Springer:367.
|
NIU X L, YANG J S, NASIR S, et al., 2020. A trip through Oceanic Lithosphere:2019 international workshop and field trip of IGCP 649 in Muscat, Oman[J]. Episodes, 43:1-8.
|
ROBINSON P T, BAI W J, MALPAS J, et al., 2004. Ultrahigh-pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications[J]. Geological Society, London, Special Publication, 226(1):247-271. doi: 10.1144/GSL.SP.2004.226.01.14
|
ROBINSON P T, TRUMBULL R B, SCHMITT A, et al., 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27(2):486-506. doi: 10.1016/j.gr.2014.06.003
|
ROLLINSON H, 2016. Surprises from the top of the mantle transition zone[J]. Geology Today, 32(2):58-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/gto.12130
|
RUBIE D C, VAN DER HILST R D, 2001. Processes and consequences of deep subduction:introduction[J]. Physics of the Earth and Planetary Interiors, 127(1-4):1-7. doi: 10.1016/S0031-9201(01)00217-5
|
ŞENGöR A M C, 1979. Mid-Mesozoic closure of Permo-Triassic tethys and its implications[J]. Nature, 279(5714):590-593. doi: 10.1038/279590a0
|
SHILO N A, KAMINSKIY F V, PALANDZHYAN S, et al., 1978. First diamond finds in Alpine-type ultrabasic rocks in the Northeastern USSR[J]. Doklady Earth Sciences, 241:179-182.
|
SUN W D, HAWKESWORTH C J, YAO C, et al., 2018. Carbonated mantle domains at the base of the Earth's transition zone[J]. Chemical Geology, 478:69-75. doi: 10.1016/j.chemgeo.2017.08.001
|
TANG M, CHEN K, RUDNICK R L, 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271):372-375. doi: 10.1126/science.aad5513
|
TAYLOR W R, MILLEDGE H J, GRIFFIN B J, et al., 1995. Characteristics of microdiamonds from ultramafic massifs in Tibet:authentic ophiolitic diamonds or contamination? Sixth international kimberlite conference; extended abstracts[R]. Proceedings of the International Kimberlite Conference, 6:623-624.
|
TIAN Y Z, YANG J S, ROBINSON P T, et al., 2015. Diamond discovered in High-Al chromitites of the sartohay ophiolite, Xinjiang province, China[J]. Acta Geologica Sinica (English Edition), 89(2):332-340. doi: 10.1111/1755-6724.12433
|
TORSVIK T H, BURKE K, STEINBERGER B, et al., 2010. Diamonds sampled by plumes from the core-mantle boundary[J]. Nature, 466(7304):352-355. doi: 10.1038/nature09216
|
TRUMBULL R B, YANG J S, ROBINSON P T, et al., 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle:New discoveries from ophiolites[J]. Lithos, 113(3-4):612-620. doi: 10.1016/j.lithos.2009.06.033
|
WU W W, YANG J S, MA C Q, et al., 2017. Discovery and significance of diamonds and Moissanites in Chromitite within the Skenderbeu massif of the Mirdita zone Ophiolite, west Albaznia[J]. Acta Geologica Sinica (English Edition), 91(3):882-897. doi: 10.1111/1755-6724.13316
|
WU Y, XU M J, JIN Z M, et al., 2016. Experimental constraints on the formation of the Tibetan podiform chromitites[J]. Lithos, 245:109-117. doi: 10.1016/j.lithos.2015.08.005
|
XIAO W J, HUANG B C, HAN C M, et al., 2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2-3):253-273. doi: 10.1016/j.gr.2010.01.007
|
XIONG F H, YANG J S, ROBINSON P T, et al., 2017. Diamonds discovered from High-Cr Podiform chromitites of Bulqiza, eastern Mirdita Ophiolite, Albania[J]. Acta Geologica Sinica (English Edition), 91(2):455-468. doi: 10.1111/1755-6724.13111
|
XU X Z, YANG J S, BA D Z, et al., 2008. Diamond discovered from the Kangjinla chromitite in the Yarlung Zangbo ophiolite belt, Tibet[J]. Acta Petrologica Sinica, 24(7)7:1453-1462. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807003
|
XU X Z, YANG J S, CHEN S Y, et al., 2009. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet[J]. Journal of Earth Sciences, 20(2):284-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e200902008
|
XU X Z, YANG J S, ROBINSON P T, et al., 2015. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27(2):686-700. doi: 10.1016/j.gr.2014.05.010
|
YAMAMOTO S, KOMIYA T, HIROSE K, et al., 2009. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3-4):314-322. doi: 10.1016/j.lithos.2008.05.003
|
YANG J S, DILEK Y, ROBINSON P T, 2014a. Diamonds in ophiolites:a little-known diamond occurrence[J]. Elements, 10:123-126.
|
YANG J S, DOBRZHINETSKAYA L, BAI W J, et al., 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10):875-878. doi: 10.1130/G23766A.1
|
YANG J S, LIAN D Y, ROBINSON P T, et al., 2019a. Comment on "A shallow origin for diamonds in ophiolitic chromitites"[J]. Geology, 47(8):e475-e475. DOI: 10.1130/G46446C.1.
|
YANG J S, MENG F C, XU X Z, et al., 2015a. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 27(2):459-485. doi: 10.1016/j.gr.2014.07.004
|
YANG J S, PEARCE J, DILEK Y, 2016. Probing the Troodos ophiolite:IGCP-649 workshop and field excursion held in Agros-Cyprus[J]. Acta Geologica Sinica (English Edition), 90(3):1041-1044. doi: 10.1111/1755-6724.12744
|
YANG J S, QIU T, CASTRO A I L, 2017. Report on the third IGCP-649 international workshop on the mayarí-baracoa ophiolites and chromitites, cuba[J]. Acta Geologica Sinica (English Edition), 91(6):2305-2309. doi: 10.1111/1755-6724.13466
|
YANG J S, ROBINSON P T, DILEK Y, 2015b. Diamond-bearing ophiolites and their geological occurrence[J]. Episodes, 38(4):344-364. doi: 10.18814/epiiugs/2015/v38i4/82430
|
YANG J S, SHEN T T, 2018b. IGCP-649 project held 2018 international workshop and field trip in Brisbane, Australia and New Caledonia[J]. Episodes, 41(4):259-265. doi: 10.18814/epiiugs/2018/v41i4/005
|
YANG J S, SHEN T T, ZHANG C, et al., 2019b. Preface:introduction of IGCP 649 project-diamonds and recycled mantle[J]. Journal of Earth Science, 30(3):429-430. doi: 10.1007/s12583-019-1229-6
|
YANG J S, SIMAKOV S K, MOE K, et al., 2020. Comment on "Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials" by Litasov et al., 2019[J]. Gondwana Research, 79:301-303. doi: 10.1016/j.gr.2019.09.010
|
YANG J S, TRUMBULL R B, ROBINSON P T, et al., 2018a. Comment on "Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes"[J]. Geochemical Perspectives Letters, 8:6-7. DOI: 10.7185/geochemlet.1820.
|
YANG J S, XU X Z, BAI W J, et al., 2014b. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 30(8):2113-2124. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201408001
|
YANG J S, XU X Z, LI Y, et al., 2011a. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet:A proposal for a new type of diamond occurrence[J]. Acta Petrologica Sinica, 27(11):3171-3178. (in Chinese with English abstract)
|
YANG J S, XU X Z, LI Y, et al., 2011b. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet and its implications[J]. Acta Petrologica Sinica, 27(11):3207-3222. (in Chinese with English abstract)
|
YANG J S, XU X Z, ZHANG Z M, et al., 2013. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientia Sinica, 34(6):643-653. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201306001
|
ZHANG R Y, SHAU Y H, YANG J S, et al., 2017a. Discovery of clinoenstatite in the Luobusa ophiolitic mantle peridotite recovered from a drill hole, Tibet[J]. Journal of Asian Earth Sciences, 145:605-612. doi: 10.1016/j.jseaes.2017.07.003
|
ZHANG R Y, YANG J S, ERNST W G, et al., 2016. Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet:New insights into the deep upper mantle and mantle transition zone[J]. American Mineralogist, 101(5-6):1285-1294
|
ZHANG Y F, JIN Z M, GRIFFIN W L, et al., 2017b. High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 463:151-158. doi: 10.1016/j.epsl.2017.01.036
|
ZHAO P D, OHTANI E, 2009. Deep slab subduction and dehydration and their geodynamic consequences:evidence from seismology and mineral physics[J]. Gondwana Research, 16(3-4):401-413. doi: 10.1016/j.gr.2009.01.005
|
ZHOU M F, ROBINSON P T, MALPAS J, et al., 1996. Podiform chromitites in the Luobusa Ophiolite (southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 37(1):3-21. doi: 10.1093/petrology/37.1.3
|
ZHOU M F, ROBINSON P T, SU B X, et al., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits:The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1):262-283. doi: 10.1016/j.gr.2013.12.011
|
李三忠, 曹现志, 王光增, 等, 2019.太平洋板块中-新生代构造演化及板块重建[J].地质力学学报, 25(5):642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060.
|
连东洋, 杨经绥, 刘飞, 等. 2019.金刚石分类, 组成特征以及我国金刚石研究展望[J].地球科学, 044(010):P.3409-3453.
|
卢焕章, 2019.地球中的流体和穿越层圈构造[J].地质力学学报, 25(6):1003-1012. DOI: 10.12090/j.issn.1006-6616.2019.25.06.083.
|
切切斯特钻石公司考察团, 1997.西藏罗布莎和东巧地幔橄榄岩中不存在原生或残留的金刚石.西藏地质, (1):103-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701067024
|
徐向珍, 杨经绥, 巴登珠, 等, 2008.雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石.岩石学报, 24(7):1453-1462. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807003
|
杨经绥, 徐向珍, 李源, 等, 2011a.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出.岩石学报, 27(11):3171-3178. doi: 10.1016/S1002-0160(11)60127-6
|
杨经绥, 徐向珍, 李源, 等, 2011b.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石及其意义.岩石学报, 27(11):3207-3222.
|
杨经绥, 徐向珍, 张仲明, 等, 2013.蛇绿岩型金刚石和铬铁矿深部成因.地球学报, 34(6):643-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201306001
|
杨经绥, 徐向珍, 白文吉, 等, 2014b.蛇绿岩型金刚石的特征.岩石学报, 30(8):2113-2124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201408001
|