Volume 26 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
PANG Xiongqi, LIN Huixi, ZHENG Dingye, et al., 2020. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China. Journal of Geomechanics, 26 (5): 673-695. DOI: 10.12090/j.issn.1006-6616.2020.26.05.057
Citation: PANG Xiongqi, LIN Huixi, ZHENG Dingye, et al., 2020. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China. Journal of Geomechanics, 26 (5): 673-695. DOI: 10.12090/j.issn.1006-6616.2020.26.05.057

Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China

doi: 10.12090/j.issn.1006-6616.2020.26.05.057
More Information
  • Received: 2020-07-30
  • Revised: 2020-08-31
  • Published: 2020-10-30
  • With the increasing dependence on external oil and gas resources, China's oil and gas exploration has expanded to deep and ultra-deep areas and discovered a number of large oil and gas fields in the central and western basins successively, such as the Tahe, Puguang, Anyue, Jingbian and Shunbei oilfields, showing a broad prospect of exploration. The proven deep and ultra-deep carbonate reservoirs in China are quite different from those in the world, and the exploration of these oil and gas fields under the guidance of the classical oil and gas geological theories has met unprecedented challenges, which need to be improved and developed. Through the investigation and comparison of the geological characteristics of the proven carbonate and sandstone reservoirs around the world, it is found that their oil and gas source conditions, accumulation dynamics, and evolution processes are similar; however, it is revealed at the same time that the mineral composition of reservoir layers, their porosity and permeability change characteristics with buried depth, porosity and permeability structure characteristics, the lower limit of reservoir physical properties, and oil and gas reservoir types are very different. There are five differences between the deep and ultra-deep carbonate reservoirs in China and other basins in the world, which in China have older formations, greater burial depth, greater dolomite reservoir ratio, higher natural gas resource ratio, and more chaotic relationship between porosity and permeability. The genetic types of deep carbonate reservoirs discovered in China can be classified into five types: sedimentary high-porosity and high-permeability oil/gas reservoirs, compacted diagenetic low-porosity and low-permeability oil/gas reservoirs, crystalline diagenetic low-porosity and low-permeability oil/gas reservoirs, fluid modified high-porosity and low-permeability oil/gas reservoirs, and stress reformed low-porosity and high-permeability oil/gas reservoirs. The dynamic mechanisms of their formation are respectively related to the oil and gas migration dominated by stratigraphic deposition and buoyancy, formation compaction and non-buoyancy, diagenetic crystallization and non-buoyancy, fluid reformed media and buoyancy, stress reformed media and buoyancy. There are mainly three favorable areas and related types of oil and gas reservoirs for the exploration and development of China's deep and ultra-deep carbonate reservoirs. The first is the conventional oil and gas reservoirs with high-porosity and high-permeability, formed in the free oil/gas dynamic field above the hydrocarbon buoyance-driven depth limit in basins with low heat flow. The second is the fracture-cavity compound oil/gas reservoirs, formed by external stress and inner fluids activities in the superimposed basin due to frequent structural changes. The third one is the extensive compacted continuous unconventional tight oil/gas reservoirs, formed by the confined dynamic field in the structurally stable basin. The reformed unconventional tight carbonate oil and gas reservoirs are the main types of future oil and gas resources in the deep and ultra-deep layers of China's petroliferous basins. They both have the characteristics of conventional reservoirs formed in the early stage and their own unconventional characteristics of extensive and continuous distribution, and have undergone structural changes in the later stage. The complex distribution characteristics, dense medium conditions and high temperature and pressure environment make the exploration and development of this kind of oil and gas resources difficult and costly.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • DENG S, LI H L, HAN J, et al., 2019. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 40(5):990-998, 1073. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201905005
    GU Y, WAN Y L, HUANG J W, et al., 2019. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology and Experiment, 41(2):157-164. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201902002
    GUO Y C, PANG X Q, LI Z X, et al., 2017. The critical buoyancy threshold for tight sandstone gas entrapment:Physical simulation, interpretation, and implications to the Upper Paleozoic Ordos Basin[J]. Journal of Petroleum Science and Engineering, 149:88-97. doi: 10.1016/j.petrol.2016.10.004
    HOVORKA S D, DUTTON A R, RUPPEL S C, 1994. Sedimentologic and diagenetic controls on aquifer properties, Lower Cretaceous Edwards Carbonate Aquifer, Texas:Implications for aquifer management[J]. AAPG Bulletin, 78(9):1460-1461. doi: 10.1306/a25fee9b-171b-11d7-8645000102c1865d
    IHS Energy Group, 2018. International petroleum exploration and production database[R]. Englewood, Colorado: IHS Energy Group.
    KANG Y Z, XING S W, LI H J, et al., 2019. Features of structural systems in northern China and its control on basin and hydrocarbon distribution[J]. Journal of Geomechanics, 25(6):1013-1024. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201906002
    LI Y T, QI L X, ZHANG S N, et al., 2019. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 40(12):1470-1484. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYDQ201902019.htm
    LI Z, HUANG S J, LIU J Q, et al., 2010. Buried diagenesis, structurally controlled thermal-fluid process and their effect on Ordovician carbonate reservoirs in Tahe, Tarim basin[J]. Acta Sedimentologica Sinica, 28(5):969-979. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201005014
    LIU B Z, 2020. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin-taking Shunbei No.1 and No.5 strike slip fault zones as examples[J]. China Petroleum Exploration, 25(3):83-95. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt202003008
    LIU D H, XIAO X M, TIAN H, et al., 2009. Evidence of overpressured high-density methane inclusions and fluid pressure simulation calculations in the geological history of the Puguang Gas Field[C]//Proceedings of the 12th National Conference on Organic Geochemistry. Chengdu: Geological Society of China, Petroleum Society of China, Mineral Rock Geochemistry Society of China: 344-346. (in Chinese)
    LIU S G, SONG J M, ZHAO Y H, et al., 2014. Controlling factors of formation and distribution of Lower Cambrian Longwangmiao Formation high-quality reservoirs in Sichuan basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 41(6):657-670. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201406001
    MA Y S, 2007. Generation mechanism of Puguang gas field in Sichuan basin[J]. Acta Petrolei Sinica, 28(2):9-14, 21. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB200702001.htm
    MA Y S, CAI X Y, GUO T L, 2007. The controlling factors of oil and gas charging and accumulation of Puguang gas field in the Sichuan Basin[J]. Chinese Science Bulletin, 52(S1):193-200. doi: 10.1007/s11434-007-6007-7
    MA Y S, CAI X Y, LI G X, 2005. Basic characteristics and concentration of the Puguang gas field in the Sichuan basin[J]. Acta Geologica Sinica, 79(6):858-865. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200506014
    PANG X Q, 2014. Alteration and reformation of hydrocarbon reservoirs and simulation of the hydrocarbon loss through major tectonic events[M]. Beijing:Science Press. (in Chinese)
    PANG X Q, JIA C Z, PANG H, et al., 2018. Destruction of hydrocarbon reservoirs due to tectonic modifications:Conceptual models and quantitative evaluation on the Tarim Basin, China[J]. Marine and Petroleum Geology, 91:401-421. doi: 10.1016/j.marpetgeo.2018.01.028
    PANG X Q, JIA C Z, ZHANG K, et al., 2020. The dead line for oil and gas and implication for fossil resource prediction[J]. Earth System Science Data, 12(1):577-590. doi: 10.5194/essd-12-577-2020
    PANG X Q, JIANG Z X, HUANG H D, et al., 2014. Formation mechanisms, distribution models, and prediction of superimposed, continuous hydrocarbon reservoirs[J]. Acta Petrolei Sinica, 35(5):795-828. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201405001
    PANG X Q, LIAO Y, 2016. Genetic mechanism and prediction methodology for overstacked and continuous hydrocarbon accumulations[M]. Beijing:Science Press. (in Chinese)
    PANG X Q, LIU K Y, MA Z Z, et al., 2012a. Dynamic field division of hydrocarbon migration, accumulation and hydrocarbon enrichment rules in sedimentary basins[J]. Acta Geologica Sinica (English Edition), 86(6):1559-1592. doi: 10.1111/1755-6724.12023
    PANG X Q, WANG W Y, WANG Y X, et al., 2015. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica, 36(10):1167-1187. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201510001
    PANG X Q, ZHOU X Y, YAN S H, et al., 2012b. Research advances and direction of hydrocarbon accumulation in the superimposed basins, China:Take the Tarim Basin as an example[J]. Petroleum Exploration and Development, 39(6):692-699. doi: 10.1016/S1876-3804(12)60094-9
    QIAO B, LIU H F, HE L, et al., 2018. A new method to quantitatively rebuild palaeogeomorphology and its application to Jingbian gasfield Ordos basin[J]. Natural Gas Exploration and Development, 41(4):32-37. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201804006
    QIU Z, SHI Z S, DONG D Z, et al., 2016. Geological characteristics of source rock and reservoir of tight oil and its accumulation mechanism:A case study of Permian Lucaogou Formation in Jimusar sag, Junggar basin[J]. Petroleum Exploration and Development, 43(6):928-939. (in Chinese with English abstract) http://www.researchgate.net/publication/312129786_Geological_characteristics_of_source_rock_and_reservoir_of_tight_oil_and_its_accumulation_mechanism_A_case_study_of_Permian_Lucaogou_Formation_in_Jimusar_sag_Junggar_Basin
    SHEN W B, PANG X Q, ZHANG B S, et al., 2015. Physical properties differences and key controlling factors of the clasolite reservoirs and carbonate reservoirs in Tazhong Area[J]. Geological Journal of China Universities, 21(1):138-146. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201501014
    TODOROVIC-MARINIC D, CHOPRA S, EDMONDS M, 2011. Advanced seismic techniques help in characterizing a challenging Jean Marie carbonate play, NE British Columbia, Canada-a Case Study[J]. Csegrecorder, 10(1):51-59. http://csegrecorder.com/articles/view/advanced-seismic-techniques-help-in-characterizing-a-challenging-jean-marie
    WANG X X, CUI D Y, SUN C H, et al, 2019. Characteristics of strike-slip fault and its controlling on oil in block A of the Halahatang oilfield, Tarim basin[J]. Journal of Geomechanics, 25(6):1058-1067. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201906006
    WANG W Y, PANG X Q, CHEN Z X, et al., 2019a. Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China[J]. Energy, 174:861-872. http://www.sciencedirect.com/science/article/pii/S0360544219304220
    WANG W Y, PANG X Q, CHEN Z X, et al., 2019b. Statistical evaluation and calibration of model predictions of the oil and gas field distributions in superimposed basins:A case study of the Cambrian Longwangmiao Formation in the Sichuan Basin, China[J]. Marine and Petroleum Geology, 106:42-61.
    WEI X S, CHEN J P, LV Q Q, et al., 2019. Quality differences between dolomite and tight sandstone reservoirs[J]. Oil & Gas Geology, 40(2):294-301. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201902009
    WU D, ZHU X M, ZHANG H H, et al., 2014. Deposition characteristics and hydrocarbon distribution in medium and large basins of Nansha, South China Sea[J]. Journal of Palaeogeography, 16(5):673-686. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201405009
    XU D Z, 2018. Research on the genetic mechanism of Ordovician reservoirs in Shunbei area[D]. Chengdu: Southwest Petroleum University. (in Chinese with English abstract)
    YANG C Y, WEN L, WANG T G, et al, 2020. Timing of hydrocarbon accumulation for paleo-oil reservoirs in Anyue gas field in Chuanzhong Uplift[J]. Oil & Gas Geology, 41(3):492-502. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz202003007
    YANG H, LIU S X, ZHANG D F, 2013. Main controlling factors of gas pooling in Ordovician marine carbonate reservoirs in the Ordos Basin and advances in gas exploration[J]. Natural Gas Industry, 33(5):1-12. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201305001
    ZHANG C L, PANG X Q, TIAN S C, et al., 2014. Oil-Source Correlation of Paleo-reservoir in Ordovician and the Gas Source of Jingbian Gasfield, West Ordos basin[J]. Natural Gas Geoscience, 25(8):1242-1251. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201408015
    ZHAO R, ZHAO T, LI H L, et al., 2019. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 26(5):8-13. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201905002
    ZHU G Y, ZHANG S C, 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J]. Acta Petrolei Sinica, 30(6):793-802. (in Chinese with English abstract)
    ZOU C N, ZHAI G M, ZHANG G Y, et al., 2015. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1):13-25. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201501002
    邓尚, 李慧莉, 韩俊, 等, 2019.塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J].石油与天然气地质, 40(5):990-998, 1073. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201905005
    顾忆, 万旸璐, 黄继文, 等, 2019. "大埋深、高压力"条件下塔里木盆地超深层油气勘探前景[J].石油实验地质, 41(2):157-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201902002
    康玉柱, 邢树文, 李会军, 等, 2019.中国北方地区构造体系控盆作用与控油分布规律[J].地质力学学报, 25(6):1013-1024. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190602&journal_id=dzlxxb
    李映涛, 漆立新, 张哨楠, 等, 2019.塔里木盆地顺北地区中-下奥陶统断溶体储层特征及发育模式[J].石油学报, 40(12):1470-1484. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201912005.htm
    李忠, 黄思静, 刘嘉庆, 等, 2010.塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造-热流体作用及其有效性[J].沉积学报, 28(5):969-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201005014
    刘宝增, 2020.塔里木盆地顺北地区油气差异聚集主控因素分析:以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探, 25(3):83-95.
    刘德汉, 肖贤明, 田辉, 等, 2009.普光气田地质历史中存在超压的高密度甲烷包裹体证据和流体压力模拟计算[C]//第十二届全国有机地球化学学术会议论文集.成都: 中国地质学会, 中国石油学会, 中国矿物岩石地球化学学会: 344-346.
    刘树根, 宋金民, 赵异华, 等, 2014.四川盆地龙王庙组优质储层形成与分布的主控因素[J].成都理工大学学报(自然科学版), 41(6):657-670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201406001
    马永生, 2007.四川盆地普光超大型气田的形成机制[J].石油学报, 28(2):9-14, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200702002
    马永生, 蔡勋育, 李国雄, 2005.四川盆地普光大型气藏基本特征及成藏富集规律[J].地质学报, 79(6):858-865. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200506014
    马永生, 蔡勋育, 郭彤楼, 2007.四川盆地普光大型气田油气充注与富集成藏的主控因素[J].科学通报, 52(S1):149-155.
    庞雄奇, 2014.油气藏调整改造与构造破坏烃量模拟[M].北京:科学出版社.
    庞雄奇, 姜振学, 黄捍东, 等, 2014.叠复连续油气藏成因机制、发育模式及分布预测[J].石油学报, 35(5):795-828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201405001
    庞雄奇, 廖勇, 2016.叠复连续油气藏成因机制与预测方法:以南哈大气田的勘探与发现为例[M].北京:科学出版社.
    乔博, 刘海锋, 何鎏, 等, 2018.鄂尔多斯盆地靖边气田的古地貌定量恢复新方法[J].天然气勘探与开发, 41(4):32-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201804006
    邱振, 施振生, 董大忠, 等, 2016.致密油源储特征与聚集机理:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J].石油勘探与开发, 43(6):928-939. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201606010.htm
    沈卫兵, 庞雄奇, 张宝收, 等, 2015.塔中地区碳酸盐岩与碎屑岩储层物性差异及主控因素[J].高校地质学报, 21(1):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201501014
    王新新, 崔德育, 孙崇浩, 等, 2019.哈拉哈塘油田A地区断裂特征及其控油作用[J].地质力学学报, 25(6):1058-1067. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190606&journal_id=dzlxxb
    魏新善, 陈娟萍, 吕奇奇, 等, 2019.白云岩与砂岩致密储集体质量的差异性[J].石油与天然气地质, 40(2):294-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201902009
    吴冬, 朱筱敏, 张厚和, 等, 2014.中国南沙海域大中型盆地沉积特征与油气分布[J].古地理学报, 16(5):673-686. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201405009
    许大钊, 2018.顺北地区奥陶系储层成因机制研究[D].成都: 西南石油大学.
    杨程宇, 文龙, 王铁冠, 等, 2020.川中隆起安岳气田古油藏成藏时间厘定[J].石油与天然气地质, 41(3):492-502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz202003007
    杨华, 刘新社, 张道锋, 2013.鄂尔多斯盆地奥陶系海相碳酸盐岩天然气成藏主控因素及勘探进展[J].天然气工业, 33(5):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201305001
    张春林, 庞雄奇, 田世澄, 等, 2014.鄂尔多斯盆地西部奥陶系古油藏油源对比与靖边气田气源[J].天然气地球科学, 25(8):1242-1251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201408015
    赵锐, 赵腾, 李慧莉, 等, 2019.塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J].特种油气藏, 26(5):8-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201905002
    朱光有, 张水昌, 2009.中国深层油气成藏条件与勘探潜力[J].石油学报, 30(6):793-802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200906001
    邹才能, 翟光明, 张光亚, 等, 2015.全球常规-非常规油气形成分布、资源潜力及趋势预测[J].石油勘探与开发, 2015, 42(1):13-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201501002
  • 加载中

Catalog

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (1357) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return