Citation: | YAN Yan, PENG Runmin, CHEN Siyu, et al., 2020. Quantitative structure analysis of ore-bearing garnet-rich crystal in the Huogeqi mining area in Inner Mongolia and its significance. Journal of Geomechanics, 26 (1): 135-150. DOI: 10.12090/j.issn.1006-6616.2020.26.01.014 |
BADDELEY A, TURNER R, 2005. spatstat:an R package for analyzing spatial point patterns[J]. Journal of Statistical Software, 12(6):1-42. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0211395373/
|
BAU M, 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions To Mineralogy and Petrology, 123(3):323-333. http://cn.bing.com/academic/profile?id=21b3da153c79231451b9f222b56835a7&encoded=0&v=paper_preview&mkt=zh-cn
|
BAXTER E F, CADDICK M J, AGUE J J, 2013. Garnet:common mineral, uncommonly useful[J]. Elements, 9(6):415-419. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229223440/
|
BERGER A, BRODHAG S H, HERWEGH M, 2010. Reaction-induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates[J]. Journal of Metamorphic Geology, 28(8):809-824. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96ec3f9131067f60984360ad5a1b52e5
|
BERGER A, HERWEGH M, SCHWARZ J O, et al., 2011. Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D[J]. Journal of Structural Geology, 33(12):1751-1763. http://cn.bing.com/academic/profile?id=3f872de859383a39342a03f51d66510a&encoded=0&v=paper_preview&mkt=zh-cn
|
CHENG H, ZHOU Z Y, NAKAMURA E, 2008. Crystal-size distribution and composition of garnets in eclogites from the Dabie orogen, central China[J]. American Mineralogist, 93(1):124-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=am.2008.2556
|
CLARK P J, EVANS F C, 1954. Distance to nearest neighbor as a measure of spatial relationships in populations[J]. Ecology, 35(4):445-453. doi: 10.2307-1931034/
|
DAI Z X, SHENG J F, BAI Y, et al., 2005. Distribution and potentiality of lead and zinc resources in the world[M]. Beijing:Seismological Press. (in Chinese)
|
EBERL D D, DRITS V A, SRODON J, 1998. Deducing growth mechanisms for minerals from the shapes of crystal size distributions[J]. American journal of Science, 298(6):499-533. http://cn.bing.com/academic/profile?id=f5e394aa3454c6cac42a370649ad6810&encoded=0&v=paper_preview&mkt=zh-cn
|
EBERL D D, KILE D E, DRITS V A, 2002. On geological interpretations of crystal size distributions:constant vs. proportionate growth[J]. American Mineralogist, 87(8-9):1235-1241. http://cn.bing.com/academic/profile?id=81ab47be04a2f18fa920bbab62e487d9&encoded=0&v=paper_preview&mkt=zh-cn
|
EHRLICH R, VOGEL T A, WEINBERG B, et al., 1972. Textural variation in petrogenetic analyses[J]. Geological Society of America Bulletin, 83(3):665-676. http://cn.bing.com/academic/profile?id=ea3e51cfcbaafdaa0be951a230f08a68&encoded=0&v=paper_preview&mkt=zh-cn
|
FRY N, 1979. Random point distributions and strain measurement in rocks[J]. Tectonophysics, 60(1-2):89-105. http://cn.bing.com/academic/profile?id=47c471a47aca8f3cb1b9e11912a16a77&encoded=0&v=paper_preview&mkt=zh-cn
|
GASPARIK T, 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet[J]. Contributions to Mineralogy and Petrology, 102(4):389-405. http://cn.bing.com/academic/profile?id=9cbc7d1b9f5df52d00b8449622168f36&encoded=0&v=paper_preview&mkt=zh-cn
|
HAYS S, 2011. The crystal nucleation and growth in metamorphic processes based on the Crystal Size Distributions (CSD) of mineral phases. The Grenville province, Ontario, Canada[D]. Buffalo, New York: State University of New York at Buffalo.
|
HIGGINS M D, 1994. Numerical modeling of crystal shapes in thin sections:estimation of crystal habit and true size[J]. American Mineralogist, 79(1-2):113-119. http://cn.bing.com/academic/profile?id=b00f384ad06bbb8ed25b6510ed20bab4&encoded=0&v=paper_preview&mkt=zh-cn
|
HIGGINS M D, 2000. Measurement of crystal size distributions[J]. American Mineralogist, 85(9):1105-1116. doi: 10.1016-0009-2509(81)85040-3/
|
HIGGINS M D, 2006. Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets[J]. Journal of Volcanology and Geothermal Research, 154(1-2):8-16. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023678072/
|
HU J M, GONG W B, WU S J, et al., 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255:756-770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3b6d224e161ba2340eff59b6fde5125
|
HUANG C K, BAI Z, ZHU Y S, et al., 2001. Copper deposit of China[M]. Beijing:Geological Publishing House. (in Chinese)
|
JIN Z D, LI Y, ZHU J C, 1997. A discussion on hot water sedimentary rocks in Huogeqi Copper-polymetallic ore deposit[J]. Geology of Inner Mangolia(2):22-28. (in Chinese with English abstract)
|
KELLY E D, CARLSON W D, KETCHAM R A, 2013. Magnitudes of departures from equilibrium during regional metamorphism of porphyroblastic rocks[J]. Journal of Metamorphic Geology, 31(9):981-1002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/jmg.12053
|
KETCHAM R A, CARLSON W D, 2012. Numerical simulation of diffusion-controlled nucleation and growth of porphyroblasts[J]. Journal of Metamorphic Geology, 30(5):489-512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c763e0e4cd12c193698998e3d486e9d
|
KRETZ R, 1966. Grain-size distribution for certain metamorphic minerals in relation to nucleation and growth[J]. The Journal of Geology, 74(2):147-173. http://cn.bing.com/academic/profile?id=5b9cab0bb3c05e14cbd8f43fb1b3df10&encoded=0&v=paper_preview&mkt=zh-cn
|
LAING W P, MARJORIBANKS R W, RUTLAND R W R, 1978. Structure of the Broken Hill mine area and its significance for the genesis of the orebodies[J]. Economic Geology, 73(6):1112-1136. http://cn.bing.com/academic/profile?id=9686359fb28755b1378ea4fadbf5615a&encoded=0&v=paper_preview&mkt=zh-cn
|
LISITSIN V, 2015. Spatial data analysis of mineral deposit point patterns:applications to exploration targeting[J]. Ore Geology Reviews, 71:861-881. http://cn.bing.com/academic/profile?id=18ff1159e417ab2149592df958d441ec&encoded=0&v=paper_preview&mkt=zh-cn
|
LISITSIN V A, PORWAL A, MCCUAIG T C, 2014. Probabilistic fuzzy logic modeling:quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations[J]. Mathematical Geosciences, 46(6):747-769. http://cn.bing.com/academic/profile?id=518e00c669d8bdff53f11e9ee403f6e4&encoded=0&v=paper_preview&mkt=zh-cn
|
LIU Y, WANG W L, TENG X J, et al., 2019. Geochemistry and Hf isotopes characteristics and geological significance of Latest Early Permian granodiorite of Langshan Area, Inner Mongolia[J]. Advances in Earth Science, 34(4):366-381. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201904004
|
LU S N, YANG C L, LI H K, et al., 2002. A group of rifting events in the terminal paleoproterozoic in the North China Craton[J]. Gondwana Research, 5(1):123-131. doi: 10.1016-S1342-937X(05)70896-0/
|
MAHAR E M, BAKER J M, POWELL R, et al., 1997. The effect of Mn on mineral stability in metapelites[J]. Journal of Metamorphic Geology, 15(2):223-238. doi: 10.1111-j.1525-1314.1997.00011.x/
|
MARSH B D, 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[J]. Contributions to Mineralogy and Petrology, 99(3):277-291. doi: 10.1007-BF00371933/
|
MARSH B D, 2007. Crystallization of silicate magmas deciphered using crystal size distributions[J]. Journal of the American Ceramic Society, 90(3):746-757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1551-2916.2006.01473.x
|
MVLLER T, BAUMGARTNER L P, FOSTER JR C T, et al., 2009. Crystal size distribution of periclase in contact metamorphic dolomite marbles from the southern Adamello Massif, Italy[J]. Journal of Petrology, 50(3):451-465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8bab3577ccbae01c7674af50654d44f6
|
PARSA M, MAGHSOUDI A, YOUSEFI M, 2018. Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran[J]. Ore Geology Reviews, 92:97-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6301dd8de7a0069d65aafe24a4a1ec2
|
PENG R M, ZHAI Y S, HAN X F, et al., 2007. Sinsedimentry volcanic activities in the cracking process of the Mesoproterozoic aulacogen of passive continental margin in Langshan-Zhaertai area, Inner Mongolia, and its indicating significance[J]. Acta Petrologica Sinica, 23(5):1007-1017. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200705014
|
PENG R M, ZHAI Y S, WANG Z G, et al., 2006. Characteristics and exploration of submarine sedex deposits in the Langshan-Zhaertai ore concentration area, Inner Mongolia[J]. Mineral Deposits, 25(S1):221-224. (in Chinese with English abstract)
|
PENG R S, ZHAI Y S, WANG J P, et al., 2010. Discovery of Neoproterozoic acid volcanic rock in the South-western section of Langshan, Inner Mongolia[J]. Chinese Science Bulletin, 55(26):2611-2620. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008
|
PI Q H, LIU C Z, CHEN Y L, et al., 2010. Formation epoch and genesis of intrusive rocks in Huogeqi orefield of Inner Mongolia and their relationship with copper mineralization[J]. Mineral Deposits, 29(3):437-451. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201003006
|
RIPLEY B D, 1977. Modelling spatial patterns[J]. Journal of the Royal Statistical Society. Series B (Methodological), 39(2):172-212. http://d.old.wanfangdata.com.cn/Periodical/ygxb200601015
|
ROZENDAAL A, STUMPFL E F, 1984. Mineral chemistry and genesis of Gamsberg zinc deposit, South Africa[J]. Transactions of the Institution of Mining and Metallurgy, 93:B161-B175. http://cn.bing.com/academic/profile?id=120e8dde218fdaba009059698754f067&encoded=0&v=paper_preview&mkt=zh-cn
|
RYAN P J, LAWRENCE A L, LIPSON R D, et al., 1986. The Aggeneys base metal sulphide deposits, Namaqualand district[M]//ANHAEUSSER C R, MASKE S. Mineral Deposits of Southern Africa. Johannesburg: Geological Society of South Africa: 1447-1473.
|
SYMMES G H, FERRY J M, 1992. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism[J]. Journal of Metamorphic Geology, 10(2):221-237. doi: 10.1111-j.1525-1314.1992.tb00080.x/
|
TEWHEY J D, 1975. The controls of biotite-cordierite-chlorite-garnet equilibria in the contact aureole of the cupsuptic pluton, West Central Maine and the Two-phase region in the CaO-SiO2 System: Experimental data and thermodynamic analysis[D]. Providence: Brown University.
|
VERRECCHIA E P, 2003. Foreword:image analysis and morphometry of geological objects[J]. Mathematical Geology, 35(7):759-762. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214958123/
|
WALTERS S, BAILEY A, 1998. Geology and mineralization of the Cannington Ag-Pb-Zn deposit:an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia[J]. Economic Geology, 93(8):1307-1329. http://cn.bing.com/academic/profile?id=b27c77bebbc8ebf82095096b84f244c0&encoded=0&v=paper_preview&mkt=zh-cn
|
WANG S Y, YANG H M, 1993. Research on effusion metallogeny of the Langshan orogenic belt inner mongolia[M]. Wuhan:China University of Geosciences Press. (in Chinese)
|
XU B, CHEN B, 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia[J]. Science in China Series D:Earth Sciences, 40(5):463-469. http://cn.bing.com/academic/profile?id=4dee46f224d634e9d8dad832d0049062&encoded=0&v=paper_preview&mkt=zh-cn
|
XU G Z, BIAN Q T, ZHOU S P, 1998. Geo-tectonic conditions of the formation of Proterozoic large and superlarge ore deposits along northwestern margin of North China Plate[J]. Science in China Series D:Earth Sciences, 41(1):13-20. doi: 10.1007-BF02875633/
|
YANG Z F, LUO Z H, LU X X, 2010. Quantitative textural analysis of igneous rocks and the kinetics and dynamics of magma solidification processes[J]. Earth Science Frontiers, 17(1):246-266. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201001021
|
YU J J, YANG H M, YE H S, 1993. Geological and geochemical characteristics and material sources of the Huogeqi Copper-polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 12(1):67-76. (in Chinese with English abstract)
|
ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5):722-745. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309003
|
ZHAI M G, SANTOSH M, 2013. Metallogeny of the North China Craton:link with secular changes in the evolving Earth[J]. Gondwana Research, 24(1):275-297. http://cn.bing.com/academic/profile?id=27277bba31bf94b9af6e059c9c7dbacf&encoded=0&v=paper_preview&mkt=zh-cn
|
ZHAI Y S, WANG J P, DENG J, et al., 2008. Temporal-spatial evolution of metallogenic systems and its significance to mineral exploration[J]. Geoscience, 22(2):143-150. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200802001
|
ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5):613-641. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201905004
|
ZHAO Y F, HU J M, GONG W B, et al., 2019. Tectonic framework and deformation events in the central Trans-North China Tectonic Belt during the Late Paleoproterozoic[J]. Earth Science Frontiers, 26(2):104-119. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201902008
|
ZHONG R C, LI W B, CHEN Y J, et al., 2012. Ore-forming conditions and genesis of the Huogeqi Cu-Pb-Zn-Fe deposit in the northern margin of the North China Craton:evidence from ore petrologic characteristics[J]. Ore Geology Reviews, 44:107-120. http://cn.bing.com/academic/profile?id=c454c02c14e8df2e762298aed37f11bd&encoded=0&v=paper_preview&mkt=zh-cn
|
戴自希, 盛继福, 白冶, 等, 2005.世界铅锌资源的分布与潜力[M].北京:地震出版社.
|
黄崇轲, 白冶, 朱裕生, 等, 2001.中国铜矿床(上册)[M].北京:地质出版社.
|
金章东, 李英, 朱金初, 1997.霍各乞铜多金属矿区热水沉积岩类初探[J].内蒙古地质(2):22-28. http://www.cnki.com.cn/Article/CJFDTotal-NMGZ199702002.htm
|
刘洋, 王文龙, 滕学建, 等, 2019.内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、Hf同位素特征及其地质意义[J].地球科学进展, 34(4):366-381. http://www.cnki.com.cn/Article/CJFDTotal-DXJZ201904007.htm
|
彭润民, 翟裕生, 王志刚, 等, 2006.内蒙古狼山-渣尔泰山矿集区海底喷流成矿特征与勘查[J].矿床地质, 25(S1):221-224. http://d.old.wanfangdata.com.cn/Conference/6278240
|
彭润民, 翟裕生, 韩雪峰, 等, 2007.内蒙古狼山-渣尔泰山中元古代被动陆缘裂陷槽裂解过程中的火山活动及其示踪意义[J].岩石学报, 23(5):1007-1017. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705014
|
彭润民, 翟裕生, 王建平, 等, 2010.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, 55(26):2611-2620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008
|
皮桥辉, 刘长征, 陈岳龙, 等, 2010.内蒙古霍各乞海西期侵入岩形成时代、成因及其与铜矿体的关系[J].矿床地质, 29(3):437-451. http://d.old.wanfangdata.com.cn/Periodical/kcdz201003006
|
王思源, 杨海明, 1993.狼山造山带喷溢成矿研究[M].武汉:中国地质大学出版社.
|
徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J].中国科学(D辑), 27(3):227-232. http://www.cnki.com.cn/Article/CJFDTotal-JDXK199703005.htm
|
杨宗锋, 罗照华, 卢欣祥, 2010.定量化火成岩结构分析与岩浆固结的动力学过程[J].地学前缘, 17(1):246-266. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001021
|
余金杰, 杨海明, 叶会寿, 1993.霍各乞铜多金属矿床的地质-地球化学特征及矿质来源[J].矿床地质, 12(1):67-76. http://www.cqvip.com/Main/Detail.aspx?id=1110662
|
翟明国, 2019.华北克拉通构造演化[J].地质力学学报, 25(5):722-745. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190507&journal_id=dzlxxb
|
翟裕生, 王建平, 邓军, 等, 2008.成矿系统时空演化及其找矿意义[J].现代地质, 22(2):143-150. http://d.old.wanfangdata.com.cn/Periodical/xddz200802001
|
张岳桥, 董树文, 2019.晚中生代东亚多板块汇聚与大陆构造体系的发展[J].地质力学学报, 25(5):613-641. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190503&journal_id=dzlxxb
|
赵远方, 胡健民, 公王斌, 等, 2019.华北克拉通中部带中段古元古代构造格架与主要变形事件研究[J].地学前缘, 26(2):104-119. http://d.old.wanfangdata.com.cn/Periodical/dxqy201902008
|