Volume 26 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
FAN Xiaoyi, ZHANG Ruixiao, HU Xiaobo, 2020. Study on the influence of valley topographic parameter on the moving distance of landslide. Journal of Geomechanics, 26 (1): 106-114. DOI: 10.12090/j.issn.1006-6616.2020.26.01.011
Citation: FAN Xiaoyi, ZHANG Ruixiao, HU Xiaobo, 2020. Study on the influence of valley topographic parameter on the moving distance of landslide. Journal of Geomechanics, 26 (1): 106-114. DOI: 10.12090/j.issn.1006-6616.2020.26.01.011

Study on the influence of valley topographic parameter on the moving distance of landslide

doi: 10.12090/j.issn.1006-6616.2020.26.01.011
More Information
  • Received: 2018-12-04
  • Revised: 2019-06-19
  • Published: 2020-02-01
  • The valley topography, located on the landslide motion path, can restrain, deflect, divert and prevent the landslide movement and result in the difference of landslide moving distance. The valley topography of landslide is divided into straight-valley and deflection-valley based on the angle between the moving direction of the landslide source area and the migration area and the extension direction of the valley accumulation area. The nonlinear regression models, related to landslide volumes and valley topographic parameters, were deduced. On the basis of the models, the laws that the volumes and the topography parameters influenced on the landslide moving distance were revealed. The results show that, the difference of the moving distance between the straight-valley and deflection-valley landslides increases gradually with the increase of volume. The reason of volume as a significant factor for landslide moving distance lies in the difference of landslide volume in order of magnitude. However, in the same order of magnitude, the volume change only is the greatest influence factor of the maximum horizontal moving distance of valley landslide, and the angle change of the slope is more significant than volume for the vertical moving distance and horizontal moving distance of the accumulative area. The deflection angle is a minor factor for deflection-valley landslide moving distance, because the valley slope significantly affects the effect of the deflection angle on the landslide moving distance. The results provide future reference for the disaster assessment of valley landslide.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • DAI Z L, HUANG Y, CHENG H L, et al., 2014. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake[J]. Engineering Geology, 180:21-33. doi: 10.1016/j.enggeo.2014.03.018
    FAN X Y, LENG X Y, DUAN X D, 2015. Influence of topographical factors on movement distances of toe-type and turning-type landslides triggered by earthquake[J]. Rock and Soil Mechanics, 36(5):1380-1388. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201505021
    HAO M H, XU Q, YANG L, et al., 2014. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics, 35(S1):127-132. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2014z1018
    HU X B, FAN X Y, TANG J J, 2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:a case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract)
    LARSEN I J, MONTGOMERY D R, KORUP O, 2010. Landslide erosion controlled by hillslope material[J]. Nature Geoscience, 3(4):247-251. doi: 10.1038/ngeo776
    LEGROS F, 2002. The mobility of long-runout landslides[J]. Engineering Geology, 63(3-4):301-331. doi: 10.1016/S0013-7952(01)00090-4
    LI X Z, KONG J M, 2010. Runout distance estimation of landslides triggered by "5·12" Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 42(5):243-249. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201005034
    LU P Y, YANG X G, SHAO S, et al., 2018. Particle discrete element simulation on punching-shear and scraping effect of landslide-debris flow[J]. Water Resources and Hydropower Engineering, 49(7):19-27. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdjs201807003
    MENG H J, JIANG Y J, ZHANG S X, et al., 2017. Analysis on the change of influence factors on slipping displacement of landslides in Dujiangyan area before and after the Wenchuan earthquake[J]. Journal of Geomechanics, 23(6):904-913. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201706011
    OUYANG C J, ZHOU K Q, XU Q, et al., 2017. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China[J]. Landslides, 14(2):705-718. doi: 10.1007/s10346-016-0764-9
    QI S W, XU Q, ZHANG B, et al., 2011. Source characteristics of long runout rock avalanches triggered by the 2008 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 40(4):896-906. doi: 10.1016/j.jseaes.2010.05.010
    TANG H M, LIU X, HU X L, et al., 2015. Evaluation of landslide mechanisms characterized by high-speed mass ejection and long-run-out based on events following the Wenchuan earthquake[J]. Engineering Geology, 194:12-24. doi: 10.1016/j.enggeo.2015.01.004
    XING A G, WANG G, YIN Y P, et al., 2014. Dynamic analysis and field investigation of a fluidized landslide in Guanling, Guizhou, China[J]. Engineering Geology, 181:1-14. doi: 10.1016/j.enggeo.2014.07.022
    XU Q, PEI X J, HUANG R Q, et al., 2009. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing:Science Press. (in Chinese)
    YANG HL, FAN X Y, ZHAO Y H, et al., 2017. Model tests on influence of deflection angle on the movement of landslide -debris avalanches[J]. Mountain Research, 35(3):316-322. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/sdxb201703009
    YANG LW, WEI Y J, WANG W P, et al., 2018. Research on dynamic characteristics of the Kalayagaqi landslide in Yining country, Xinjiang[J]. Journal of Geomechanics, 24(5):699-705. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201805013
    YIN Y P, LI B, WANG W P, et al., 2016. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2(2):230-249. doi: 10.1016/J.ENG.2016.02.005
    YOSHIDA H, SUGAI T, OHMORI H, 2012. Size-distance relationships for hummocks on volcanic rockslide-debris avalanche deposits in Japan[J]. Geomorphology, 136(1):76-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=327ca09cfdf1b12ffb141ed912a9cc92
    ZHAN W W, HUANG R Q, PEI X J, et al., 2017. Empirical prediction model for movement distance of gully-type rock avalanches[J]. Journal of Engineering Geology, 25(1):154-163. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201701021
    ZHU S B, SHI Y L, LU M, et al., 2013. Dynamic mechanisms of earthquake-triggered landslides[J]. Science China Earth Sciences, 56(10):1769-1779. doi: 10.1007/s11430-013-4582-9
    樊晓一, 冷晓玉, 段晓冬, 2015.坡脚型与偏转型地震滑坡运动距离及地形因素作用[J].岩土力学, 36(5):1380-1388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201505021
    郝明辉, 许强, 杨磊, 等, 2014.滑坡-碎屑流物理模型试验及运动机制探讨[J].岩土力学, 35(S1):127-132. http://d.old.wanfangdata.com.cn/Periodical/ytlx2014z1018
    胡晓波, 樊晓一, 唐俊杰, 2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究——以三溪村滑坡为例[J].地质力学学报, 25(4):527-535. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190410&journal_id=dzlxxb
    李秀珍, 孔纪名, 2010. "5.12"汶川地震诱发滑坡的滑动距离预测[J].四川大学学报(工程科学版), 42(5):243-249.
    陆鹏源, 杨兴国, 邵帅, 等, 2018.滑坡-碎屑流冲切铲刮效应的颗粒离散元模拟[J].水利水电技术, 49(7):19-27. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201807003
    孟华君, 姜元俊, 张树轩, 等, 2017.汶川地震前后都江堰山区滑坡滑动距离影响因素变化分析[J].地质力学学报, 23(6):904-913. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170611&journal_id=dzlxxb
    许强, 裴向军, 黄润秋, 等, 2009.汶川地震大型滑坡研究[M].北京:科学出版社.
    杨海龙, 樊晓一, 赵运会, 等, 2017.偏转角度对滑坡-碎屑流运动影响的模型试验[J].山地学报, 35(3):316-322. http://d.old.wanfangdata.com.cn/Periodical/sdxb201703009
    杨龙伟, 魏云杰, 王文沛, 等, 2018.新疆伊宁县喀拉亚尕奇滑坡动力学特征研究[J].地质力学学报, 24(5):699-705. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180513&journal_id=dzlxxb
    詹威威, 黄润秋, 裴向军, 等, 2017.沟道型滑坡-碎屑流运动距离经验预测模型研究[J].工程地质学报, 25(1):154-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201701021
    朱守彪, 石耀霖, 陆鸣, 等, 2013.地震滑坡的动力学机制研究[J].中国科学:地球科学, 43(7):1096-1105. http://d.old.wanfangdata.com.cn/Conference/7864539
  • 加载中

Catalog

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (374) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return